Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)
Tam giác ABC vuông tại A, theo py ta go:
\(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)
=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15
TAm giac ABC vuông tại A theo hệ thức lượng
AH.BC = AB.AC => AH= (AB.AC)/BC = (9.12)/15 = 7,2cm
AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4
=> HC = BC - HB = 15 - 5,4 = 9,6cm
VẬY AH = 7,2 ; BH = 5,4;CH = 9,6
Gọi 2 cạnh tam giác vuông là b và c với \(\dfrac{b}{c}=\dfrac{3}{4}\) \(\Rightarrow b=\dfrac{3}{4}c\)
Cạnh huyền là a với \(a=9,6\left(cm\right)\)
Áp dụng định lý Pitago:
\(b^2+c^2=a^2\Rightarrow\left(\dfrac{3}{4}c\right)^2+c^2=\left(9,6\right)^2\)
\(\Rightarrow c=7,68\left(cm\right)\)
\(b=\dfrac{3}{4}c=5,76\left(cm\right)\)
Áp dụng hệ thức lượng:
\(b^2=ab'\Rightarrow b'=\dfrac{b^2}{a}=3,456\left(cm\right)\)
\(c'=a-b'=6,144\left(cm\right)\)
đường cao tương ứng với cạnh huyền =9,6 chứ ko phải cạnh huyền= 9,6
Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`, đường cao `AH`.
Có: `(AB)/(AC)=3/7 = (3x)/(7x) (x>0)`
Áp dụng hệ thức lượng trong tam giác vuông ABC:
`1/(AH^2)=1/(AB^2)+1/(AC^2)`
`<=>1/(42^2)=1/(9x^2)+1/(49x^2)`
`=> x=2\sqrt58(cm)`
`=> AB=6\sqrt58, AC=14\sqty58 (cm)`
Áp dụng định lí Pytago:
`AB^2=HB^2+AH^2`
`<=> (6\sqrt58)^2=HB^2+42^2`
`=> HB=18(cm)`
`=> HC = AH^2 : HB = 98(cm)`
Vậy `HB=18cm, HC=98cm`.
Bài 2:
Gọi tam giác vuông đo là ΔABC vuông tại A có AH là đường cao
Theo đề, ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{49}\)
\(\Leftrightarrow HB=\dfrac{9}{49}HC\)
Ta có: \(HB\cdot HC=AH^2\)
\(\Leftrightarrow HC^2=42^2:\dfrac{9}{49}=9604\)
\(\Leftrightarrow HC=98\left(cm\right)\)
\(\Leftrightarrow HB=42cm\)
Gọi tam giác vuông đề bài cho là ΔABC vuông tại A có AH vuông góc BC
Theo đề, ta có: AB/AC=3/7
=>HB/HC=9/49
=>HB/9=HC/49=k
=>HB=9k; HC=49k
AH^2=HB*HC
=>9k*49k=12^2=144
=>k=4/7
=>HB=36/7cm; HC=28cm