K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 5 2021

Có thể nghịch suy để chọn hàm làm trắc nghiệm

Do \(x_2=\dfrac{x_3-x_1}{2}=1\) nên hàm có dạng: \(y=a\left(x-1\right)^4-b\left(x-1\right)^2+c\) với a;b;c dương

\(y'=0\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=\dfrac{b}{2a}\end{matrix}\right.\) \(\Rightarrow x_1;x_3\) thỏa mãn \(\left(x-1\right)^2=\dfrac{b}{2a}\) và \(f\left(x_2\right)=c\)

\(f\left(x_1\right)+f\left(x_3\right)+\dfrac{2}{3}f\left(x_2\right)=0\Leftrightarrow2f\left(x_1\right)+\dfrac{2}{3}f\left(x_2\right)=0\)

\(\Leftrightarrow a.\left(\dfrac{b}{2a}\right)^2-b\left(\dfrac{b}{2a}\right)+c+\dfrac{c}{3}=0\Rightarrow-\dfrac{b^2}{4a}+\dfrac{4c}{3}=0\)

Tới đây chọn \(a=3;c=1;b=4\) được hàm \(f\left(x\right)=3\left(x-1\right)^4-4\left(x-1\right)^2+1\)

Dễ dàng tính ra \(x_3=1+\sqrt{\dfrac{2}{3}}\) ; \(x_0=1+\sqrt{\dfrac{1}{3}}\) (với \(x_0\) là giao bên phải của đồ thị và trục hoành); \(f\left(x_1\right)=f\left(x_3\right)=-\dfrac{1}{3}\)

\(S_1+S_2=\int\limits^{x_0}_1f\left(x\right)dx-\int\limits^{x_3}_{x_0}f\left(x\right)dx\approx0,41\)

\(\dfrac{S_1+S_2}{S_3+S_4}=\dfrac{0,41}{\left(1+\dfrac{1}{3}\right)\left(x_3-1\right)-0,41}\approx0,6\)

15 tháng 12 2017

Tiếp tuyến của C vuông góc với đường thẳng y= -x + 2017 nên hệ số góc của tiếp tuyến là k 2  thỏa mãn  ( - 1 ) k 2   =   - 1   ⇒   k 2   =   1

Suy ra  k 2 = y ' = 1 ⇒ 3 x 2 - 4 x + 2 ⇔ 3 x 2 - 4 x + 2 = 0 ( * )

Vì x 1 ,   x 2  là nghiệm của (*) nên áp dụng Vi-ét ta có x 1 + x 2 = 4 3

Chọn C

8 tháng 9 2018

21 tháng 12 2018

17 tháng 10 2018

6 tháng 5 2018

Chọn D

  x 1 , x 2 là hai nghiệm của phương trình  y ' = 0

Khi đó, theo định lý Viet, ta có: x 1 + x 2 = 4 .

8 tháng 5 2017

Chọn D.

Xét phương trình hoành độ hoành độ giao điểm 

Đặt  phương trình (1) trở thành

Nên phương trình (1) có một nghiệm.

Vậy số giao điểm của đồ thị hàm số y =  x 3 +x+2 và đường thẳng y = -2x + 1 là 1.

Lưu ý: Khi giải trắc nghiệm ta có thể giải phương trình (1) bằng cách bấm máy tinh, ta được 1 nghiệm như sau.

Vậy số giao điểm của đồ thị hàm số y =  x 3 +x+2 và đường thẳng y = -2x + 1 là 1.

25 tháng 4 2017

1 tháng 10 2019

Chọn D

Từ đồ thị có x 1  là nghiệm của phương trình 

Từ đồ thị có x 2  là nghiệm của phương trình 

Do