Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
1. Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9\)
mà \(\sqrt{83}>\sqrt{81}=9\)
\(\Rightarrow\sqrt{23}+\sqrt{15}< \sqrt{83}\)
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}\)
\(=5+5-3-3\)
\(=4\)
b) \(\left(\sqrt{4^2}+\sqrt{\left(-4\right)^2}\right).\sqrt{4^{-3}}-\sqrt{3^{-4}}\)
\(=\left(4+4\right).\frac{1}{8}-\frac{1}{9}\)
\(=8.\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
\(\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2+\left(4\sqrt{0,5}\right)^2-\left(\frac{1}{5}\sqrt{125}\right)^2\)
\(=2^2.3-3^2.2+4^2.0,5-5\)
\(=12-18+8-5\)
\(=-3\)
Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)
\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)
Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.
Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)
\(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)
\(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)
\(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)
\(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)
123hehe321