K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2022

Số phần tử của S là: \(8!\)

Gọi tổng 4 chữ số sau là S \(\Rightarrow\) tổng 4 chữ số đầu là \(S+2\)

Ta có: \(S+S+2=1+3+4+5+6+7+8+9\)

\(\Rightarrow2S=41\Rightarrow S=\dfrac{41}{2}\) (vô lý do các chữ số đều nguyên)

Vậy đề bài sai

NV
24 tháng 12 2022

Gọi chữ số cuối là x thì tổng 4 chữ số đầu là \(x+2\)

\(\Rightarrow\) Tổng 5 chữ số là: \(2x+2\)

Mặt khác tổng 5 chữ số nhỏ nhất từ tập đã cho là \(1+2+3+4+5=15\)

\(\Rightarrow2x+2\ge15\Rightarrow2x\ge13\)

\(\Rightarrow x=\left\{7;8;9\right\}\)

TH1: \(x=7\Rightarrow\) tổng 4 chữ số đầu là 9 mà \(1+2+3+4>9\Rightarrow\) không tồn tại 4 chữ số thỏa mãn

TH2: \(x=8\Rightarrow\) tổng 4 chữ số đầu bằng 10

Trong 9 chữ số, chỉ có duy nhất bộ \(\left\{1;2;3;4\right\}\) có tổng bằng 10

Do đó số số trong trường hợp này là: \(4!\) số

TH3: \(x=9\Rightarrow\) tổng 4 chữ số đầu bằng \(11\Rightarrow\) có 1 bộ 4 chữ số thỏa mãn là \(\left\{1;2;3;5\right\}\)

Trường hợp này cũng có \(4!\)  số

Xác suất: \(P=\dfrac{4!+4!}{A_9^5}=...\)

NV
8 tháng 12 2021

Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)

Mặt khác \(a+b+c=d+e+f-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)

\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)

Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)

Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)

n(S)=6!

Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12

=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)

=>Có 3*3!*3!

=>P=3/20

14 tháng 7 2017

Đáp án D

Ta thu được số chẵn khi chữ số hàng đơn vị là chắn. Do vai trò của 7 số trong đó có 3 số chẵn là như nhau nên xác suất cần tính bằng

14 tháng 11 2018

NV
25 tháng 12 2022

Không gian mẫu: \(A_7^3-A_6^2=180\) số

Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn

- 3 chữ số đều lẻ: \(A_3^3=3\) số

- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách

+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số

+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số

\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số

Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)

23 tháng 11 2016

1. 5/42

2. 1/5

3. 12960

ok

23 tháng 11 2016

3. 2592 mới đúng

1,2 hình như cũng sai rồi

 

5 tháng 1 2021

Ta có : \(n\left(\Omega\right)=A^4_6=360\)

Biến cố A :"số được chọn là số có 2 chữ số chẵn và 2 chữ số lẻ"

Gọi số đó có dạng \(\overline{a_1a_2a_3a_4}\) 

- chọn 2 chữ số chẵn có \(C^2_3\) cách

- chọn 2 chữ số lẻ có \(C^2_3\) cách

Xếp 4 số vừa chọn vào 4 vị trí có 4! cách

=> \(n\left(A\right)=C_3^2.C^2_3.4!=216.344\)

=> P(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{216}{360}=\dfrac{3}{5}\)

5 tháng 1 2021

Sao lại có giai thừa ạ?