Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Phương pháp:
- Gọi I (a;b;c) là tâm mặt cầu.
- Lập hệ phương trình ẩn a,b,c
dựa vào điều kiện IA = IB = IC = ID .
Cách giải:
Gọi I (a;b;c) là tâm mặt cầu đi qua bốn điểm A(2;0;0) ,B(1;3;0) ,C(-1;0;3) ,D(1;2;3) .
<=>
Suy ra I(0;1;1) và
Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng ( α ).
Chọn A
Gọi I (a;b;c)
Ta có IA=IO=R ó hình chiếu của I lên OA là trung điểm của OA.
Theo bài ra ta có:
Đáp án C
Hướng dẫn giải:
Gọi H, K lần lượt là trung điểm của BC và SA.
Dựng đường thẳng d đi qua H và vuông góc với (ABC). Khi đó d//SA.
Trong mặt phẳng (SAH) dựng đường thằng d 1 đi qua K và vuông góc với SA.
Khi đó, d 1 //AH.
Gọi I = d ∩ d 1 tại. Ta có được IA = IB = IC = IS.
Khi đó mặt cầu cần tìm ở đề bài đi qua các điểm A, B, C, S có tâm là I và bán kính là R = IA.
Dễ thấy A H = 1 2 B C = b 2 + c 2 2
và I H = 1 2 S A = a 2 .
Trong ∆ I A H có
Vậy là ta hoàn thành xong bài toán.
Chọn: B