Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)
\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)
Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)
- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)
\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)
- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)
\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)
Phương trình đã cho tương đương với:
\(x^3-3x^2=m\)
Khảo sát và lập bẳng biến thiên hàm số vế trái ta có:
\(y=x^3-3x^2\)
Đạo hàm: \(y'=3x^2-6x\)
\(y'=0\Leftrightarrow x=0,x=2\)
Lập bảng biến thiên:
x y' y 0 2 0 0 + + - 8 8 + 8 + - 8 > > > 0 -4
Nhìn vào bảng biến thiên ta thấy để phương trình \(x^3-3x^2=m\) có 3 nghiệm phân biệt thì: \(-4< m< 0\)
\(\left(C_m\right)\) giao d: \(\frac{2x-m^2}{x+1}=m-x\Leftrightarrow x^2-\left(m-3\right)x-m^2-m=0\)
\(\Delta=5m^2-2m+9\Rightarrow x_A=\frac{m-3-\sqrt{5m^2-2m+9}}{2}\)
\(\left(C_m\right)\) giao d': \(\frac{2x-m^2}{x+1}=2-m-x\)
\(\Leftrightarrow2x-m^2=\left(2-m\right)x-x^2+2-m-x\)
\(\Leftrightarrow x^2+\left(m+1\right)x-m^2+m-2=0\)
\(\Delta=5m^2-2m+9\Rightarrow x_D=\frac{-m-1+\sqrt{5m^2-2m+9}}{2}\)
\(x_Ax_D=-3\Leftrightarrow\left(m-3-\sqrt{5m^2-2m+9}\right)\left(-m-1+\sqrt{5m^2-2m+9}\right)=-12\)
\(\Leftrightarrow-6m^2+4m+6+\left(2m-2\right)\sqrt{5m^2-2m+9}=0\)
\(\Leftrightarrow-\left(5m^2-2m+9\right)+2\left(m-1\right)\sqrt{5m^2-2m+9}-m^2+2m+15=0\)
Đặt \(\sqrt{5m^2-2m+9}=t\)
\(\Rightarrow-t^2+2\left(m-1\right)t-m^2+2m+15=0\)
\(\Delta'=m^2-2m+1-\left(m^2-2m-15\right)=16\)
\(\Rightarrow\left[{}\begin{matrix}t=m-5\\t=m+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5m^2-2m+9}=m-5\left(m\ge5\right)\\\sqrt{5m^2-2m+9}=m+3\left(m\ge-3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4m^2+8m-16=0\left(vn\right)\\4m^2-8m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
Có 2 phần tử
18.
\(F\left(x\right)=\int\limits xe^{x^2}dx\)
Đặt \(t=x^2\Rightarrow xdx=\frac{1}{2}dt\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}\int e^tdt=\frac{1}{2}e^t+C=\frac{1}{2}e^{x^2}+C\)
Ủa bạn có ghi nhầm đáp án A ko? Thế nào thì cả A và D đều ko phải nguyên hàm
19.
\(F\left(x\right)=\int sin^4xcosxdx=\int sin^4x.d\left(sinx\right)=\frac{1}{5}sin^5x+C\)
20.
Đặt \(4x=t\Rightarrow dx=\frac{1}{4}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=8\end{matrix}\right.\)
\(\int\limits^2_0f\left(4x\right)dx=\int\limits^8_0\frac{1}{4}f\left(t\right)dt=\frac{1}{4}\int\limits^8_0f\left(x\right)dx=\frac{1}{4}.24=6\)
15.
\(t=cosx\Rightarrow sinx.dx=-dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1e^t\left(-dt\right)=\int\limits^1_0e^tdt\)
Nếu cần kết quả tích phân thì \(I=e-1\)
16.
\(t=x^2\Rightarrow x.dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^4_04^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^4_04^tdt\)
17.
\(t=x^2+2x\Rightarrow\left(x+1\right)dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_0e^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^3_0e^tdt\)