K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Chọn C.

Theo đầu bài ta có; b(b2 - a2) = c(c2 - a2)

Hay b3 - c3 = a2(b - c)

Mà b - c ≠ 0 nên b2 + bc + c2 = a2

Theo định lí côsin thì a2 = b2 + c2 - 2bccosA

Do đó: b2 + bc + c2 = b2 + c2 - 2bccosA

Suy ra: cos A = - ½  hay góc A bằng 1200.

NV
29 tháng 1 2021

1.

Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)

\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)

\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)

Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

\(\Leftrightarrow\) Tam giác đã cho đều

NV
29 tháng 1 2021

2.

Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)

Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?

3.

Theo câu a, ta có:

\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Hay tam giác đã cho đều

3 tháng 4 2019

Trong tam giác ABC, theo Hệ quả định lý Cô sin ta luôn có :

Giải bài 8 trang 62 sgk Hình học 10 | Để học tốt Toán 10

Mà ta có 2.bc > 0 nên cos A luôn cùng dấu với b2 + c2 – a2.

a) Góc A nhọn ⇔ cos A > 0 ⇔ b2 + c2 – a2 > 0 ⇔ a2 < b2 + c2.

b) Góc A tù ⇔ cos A < 0 ⇔ b2 + c2 – a2 < 0 ⇔ a2 > b2 + c2.

c) Góc A vuông ⇔ cos A = 0 ⇔ b2 + c2 – a2 = 0 ⇔ a2 = b2 + c2.

28 tháng 9 2023

Áp dụng công thức đường trung tuyến

\(m_a^2+m_b^2+m_c^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}+\dfrac{c^2+a^2}{2}-\dfrac{b^2}{4}+\dfrac{a^2+b^2}{2}-\dfrac{c^2}{4}\)

                          \(=\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)

Chọn A

8 tháng 7 2017

a) Vì a, b, c là độ dài 3 cạnh của một tam giác

⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 < a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (đpcm)

b) Chứng minh tương tự phần a) ta có :

( a – b)2 < c2 (2)

(c – a)2 < b2 (3)

Cộng ba bất đẳng thức (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).

Chọn B

15 tháng 1 2021

Ta có: \(a\left(a^2-b^2\right)=c\left(b^2-c^2\right)\Leftrightarrow a^3+c^3=b^2c+b^2a\)

\(\Leftrightarrow\left(a+c\right)\left(a^2-ac+c^2\right)=b^2\left(c+a\right)\Leftrightarrow b^2=a^2-ac+c^2\).

Theo định lý hàm cos: \(b^2=a^2+c^2-2cos\widehat{B}.ac\).

Do đó \(cos\widehat{B}=\dfrac{1}{2}\) hay \(\widehat{B}=60^o\).

1 tháng 6 2017

Xét tam thức f(x) = b2x2 - (b2 + c2 - a2)x + c2 có:

Δ = (b2 + c2 - a2)2 - 4b2c2

    = (b2 + c2 - a2 - 2bc)(b2 + c2 - a2 + 2bc)

    = [(b - c)2 - a2][(b + c)2 - a2]

    = (b – c – a)(b – c + a)(b + c + a)(b + c – a).

Do a, b, c là 3 cạnh của tam giác nên theo bất đẳng thức tam giác ta có:

    b < c + a ⇒ b – c – a < 0

    c < a + b ⇒ b – c + a > 0

    a < b + c ⇒ b + c – a > 0

    a, b, c > 0 ⇒ a + b + c > 0

⇒ Δ < 0 ⇒ f(x) cùng dấu với b2 ∀x hay f(x) > 0 ∀x (đpcm).

27 tháng 3 2018

Chọn B.

Ta có:

a(a2 – c2) = b(b2 – c2) a3 – ac2 = b3 – bc2

a3 – b3 = ac2 – bc2

(a – b)(a2 + ab + b2) = c2(a – b)

a2 + ab + b2 = c2

ab = c2 – a2 – b2

Ta lại có: