K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 12 2020

\(4MO^2=AB^2\Leftrightarrow\left(2\overrightarrow{MO}\right)^2=\left(\overrightarrow{AM}+\overrightarrow{MB}\right)^2\)

\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}\right)^2=\left(\overrightarrow{AM}+\overrightarrow{MB}\right)^2\)

\(\Leftrightarrow MA^2+MB^2+2\overrightarrow{MA}.\overrightarrow{MB}=AM^2+BM^2+2\overrightarrow{AM}.\overrightarrow{MB}\)

\(\Leftrightarrow4\overrightarrow{MA}.\overrightarrow{MB}=0\Leftrightarrow\overrightarrow{MA}.\overrightarrow{MB}=0\)

\(\Leftrightarrow MA\perp MB\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow 0  \Leftrightarrow  - \overrightarrow {OA}  = \overrightarrow {OB} \)

\(\Rightarrow {\overrightarrow {MO} ^2} - {\overrightarrow {OA} ^2} = \left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO}  - \overrightarrow {OA} } \right) \\= \left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) = \overrightarrow {MA} .\overrightarrow {MB} \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\begin{array}{l}\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EA} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EB} } \right)\\ + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FC} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FD} } \right)\end{array}\)

\( = \left( {\overrightarrow {MG}  + \overrightarrow {MG}  + \overrightarrow {MG} \overrightarrow { + MG} } \right) + 2\left( {\overrightarrow {GE}  + \overrightarrow {GF} } \right) \\+ \left( {\overrightarrow {EA}  + \overrightarrow {EB} } \right) + \left( {\overrightarrow {FC}  + \overrightarrow {FD} } \right)\)

\( = 4\overrightarrow {MG}  + 2.\overrightarrow 0  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MG} \)  (đpcm)

17 tháng 12 2023

Ta có:

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}\)

          \(=6\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+4\overrightarrow{IC}\)

          \(=6\overrightarrow{MI}+4\overrightarrow{IG}+4\overrightarrow{IC}\)

          \(=6\overrightarrow{MI}\)

\(\Rightarrow M,I,N\) thẳng hàng

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {MA}  + \left( {\overrightarrow {MA}  + \overrightarrow {AB} } \right) + 2\left( {\overrightarrow {MA}  + \overrightarrow {AC} } \right) = \overrightarrow 0 \)

\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MA}  + \overrightarrow {AB}  + 2\overrightarrow {AC}  = \overrightarrow 0 \\ \Leftrightarrow 4\overrightarrow {AM}  = \overrightarrow {AB}  + 2\overrightarrow {AC} \\ \Leftrightarrow \overrightarrow {AM}  = \frac{1}{4}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \end{array}\)

Trên cạnh AB, AC lấy điểm D, E sao cho \(AD = \frac{1}{4}AB;\;\,AE = \frac{1}{2}AC\)

 

Khi đó \(\overrightarrow {AM}  = \overrightarrow {AD}  + \overrightarrow {AE} \) hay M là đỉnh thứ tư của hình bình hành AEMD.

b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = 4\overrightarrow {OM} \)

Với mọi điểm O, ta có: \(\left\{ \begin{array}{l}\overrightarrow {OA}  = \overrightarrow {OM}  + \overrightarrow {MA} ;\;\\\overrightarrow {OB}  = \overrightarrow {OM}  + \overrightarrow {MB} ;\;\,\\\overrightarrow {OC}  = \overrightarrow {OM}  + \overrightarrow {MC} \end{array} \right.\)

\(\begin{array}{l} \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = \left( {\overrightarrow {OM}  + \overrightarrow {MA} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {MB} } \right) + 2\left( {\overrightarrow {OM}  + \overrightarrow {MC} } \right)\\ = 4\overrightarrow {OM}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} } \right) = 4\overrightarrow {OM}  + \overrightarrow 0  = 4\overrightarrow {OM} .\end{array}\)

Vậy với mọi điểm O, ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = 4\overrightarrow {OM} \).

24 tháng 9 2023

Tham khảo cách 2 câu a: 

 

Cách 2:

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {MC}  + \overrightarrow {CA} } \right) + \left( {\overrightarrow {MC}  + \overrightarrow {CB} } \right) + 2\overrightarrow {MC}  = \overrightarrow 0 \)

\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MC}  + \overrightarrow {CA}  + \overrightarrow {CB}  = \overrightarrow 0 \\ \Leftrightarrow 4.\overrightarrow {CM}  = \overrightarrow {CA}  + \overrightarrow {CB} \end{array}\)

Gọi D là đỉnh thứ tư của hình bình hành ACBD.

Khi đó: \(\overrightarrow {CD}  = \overrightarrow {CA}  + \overrightarrow {CB} \)\( \Rightarrow 4.\overrightarrow {CM}  = \overrightarrow {CD} \)

\( \Leftrightarrow \overrightarrow {CM}  = \frac{1}{4}\overrightarrow {CD}  \Leftrightarrow \overrightarrow {CM}  = \frac{1}{2}\overrightarrow {CO} \)

 

Với O là tâm hình bình hành ACBD, cũng là trung điểm đoạn AB.

 

Vậy M là trung điểm của trung tuyến kẻ từ C của tam giác ABC.