Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
DO dó: ED là đường trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
M,N lần lượt là trug điểm của GB và GC
nênMN là đường trung bình
=>MN//BC và MN=BC/2
Xét ΔGMN có
I là trung điểm của GM
K là trung điểm của GN
Do đó: IK là đường trung bình
=>IK//MN và IK=MN/2
=>IK//ED và IK=BC/4
Xét tứ giác IKDE có DE//IK
nên IKDE là hình thang
Xét ΔACE và ΔABD có
AC=AB
góc A chung
AE=AD
Do đó: ΔACE=ΔABD
Suy ra: CE=BD
Xét ΔEBC và ΔDCB có
EB=DC
EC=BD
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: góc GBC=góc GCB
hay ΔGBC cân tại G
=>GB=GC
=>GD=GE
GI=1/4GB
GK=1/4GC
mà GB=GC
nên GI=GK
=>ID=EK
=>EDKI là hình thang cân
b: DE=BC/2=5cm
IK=1/4BC=2,5cm
=>DE+IK=7,5cm
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
=>AM/AC=AN/AB
=>góc AMN=góc ACB
=>góc NMB+góc NCB=180 độ
=>NMBC nội tiếp
b: kẻ đường kính AL
góc ACL=90 độ
AC*AN=AH^2
ΔAIN đồng dạng với ΔACE
=>AI/AC=AN/AE
=>AI*AE=AH^2
góc ADE=90 độ
=>ΔADE vuông tại D
=>AI*AE=AD^2=AH^2
=>AD=AH
a: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
b: Ta có: BEDF là hình bình hành
nên Hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có: ABCD là hình bình hành
nên Hai đường chéo BD và AC cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD,EF đồng quy
MI=3cm
KN=3cm
IK=4cm