Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
Gọi α là góc giữa hai đường thẳng d1, d2
⇒ α = 30 °
ĐÁP ÁN B
Đường thẳng qua A và tạo với d1d2 các góc bằng nhau khi vuông góc với phân giác của góc tạo bởi d1d2.
Do vậy số lượng đường thẳng cần tìm là 2.
Ta có d 2 : 3 x − 2 y + 1 = 0 ⇔ 6 x − 4 y + 2 = 0
Ta có điểm A(-1; 1) thuộc đường thẳng d2,.
Vì hai đường thẳng d1 và d2 song song với nhau nên ta có:
d ( d 1 ; d 2 ) = d ( A ; d 1 ) = 6. ( − 1 ) − 4. ( − 1 ) + 5 6 2 + ( − 4 ) 2 = 3 52
ĐÁP ÁN D
Hai câu tương tự, mình làm câu a:
Gọi \(M\left(x;y\right)\) là điểm thuộc đường phân giác của 2 đường thẳng
Theo tính chất phân giác ta có:
\(d\left(M;d_1\right)=d\left(M;d_2\right)\)
\(\Leftrightarrow\frac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\frac{\left|5x+3y+7\right|}{\sqrt{5^2+3^2}}\)
\(\Leftrightarrow\sqrt{34}\left|2x+4y+7\right|=2\sqrt{5}\left|5x+3y+7\right|\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{34}\left(2x+4y+7\right)=2\sqrt{5}\left(5x+3y+7\right)\\\sqrt{34}\left(2x+4y+7\right)=-2\sqrt{5}\left(5x+3y+7\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(2\sqrt{34}-10\sqrt{5}\right)x+\left(4\sqrt{34}-6\sqrt{5}\right)y+7\sqrt{34}-14\sqrt{5}=0\\\left(2\sqrt{34}+10\sqrt{5}\right)x+\left(4\sqrt{34}+6\sqrt{5}\right)y+7\sqrt{34}+14\sqrt{5}=0\end{matrix}\right.\)
Đáp án: B
Gọi góc giữa hai đường thẳng là α
⇒ α = 45 °