K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2021

ngu ing lích :)

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{6z}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{3y}{9}=\frac{6z}{30}=\frac{z+3y+6z}{2+9+30}=\frac{82}{41}=2\)

=> \(\hept{\begin{cases}\frac{x}{2}=2\\\frac{3y}{9}=2\\\frac{6z}{30}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\\z=10\end{cases}}\)=> M = x + y + z = 4 + 6 + 10 = 20

Vậy M = 20

17 tháng 1 2019

tội nghiệp , 2 năm r mà dell cs ai trả lời

méo hiểu j mà làm ọ cj

4 tháng 4 2020
https://i.imgur.com/2GoSzZS.jpg
5 tháng 4 2020

Đề câu g có vấn đề aa :>>>

Câu còn lại tương tự như trên mà

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

a)

$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$

$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$

$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$

$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$

$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:

$(x-y-z)^2=(y-z)^2=(z-3)^2=0$

$\Rightarrow z=3; y=3; x=6$

b)

$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$

$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$

$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)

$\Leftrightarrow y=z=-3; x=4$

20 tháng 12 2016

1

26 tháng 2 2017

\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\\ =>\dfrac{x}{y+z}=1-\dfrac{y}{z+x}-\dfrac{z}{x+y}\\ =>\dfrac{x}{y+z}=\dfrac{(z+x)(x+y)-y(x+y)-z(z+x)}{(z+x)(x+y)}\\ =>\dfrac{x}{y+z}=\dfrac{xz+yz+x^{2}+xy-xy-y^{2}-z^{2}-xz}{(z+x)(x+y)}\\ =>\dfrac{x}{y+z}=\dfrac{x^{2}-y^{2}-z^{2}+yz}{(z+x)(x+y)}\\ =>\dfrac{x^{2}}{y+z}=\dfrac{x^{3}-xy^{2}-xz^{2}+xyz}{(z+x)(x+y)} \ \ \ \ (1)\\ =>\dfrac{y^{2}}{z+x}=\dfrac{y^{3}-yz^{2}-yx^{2}+xyz}{(x+y)(y+z)} \ \ \ \ (2)\\ =>\dfrac{z^{2}}{x+y}=\dfrac{z^{3}-zx^{2}-zy^{2}+xyz}{(y+z)(z+x)} \ \ \ \ (3)\)

Cộng vế vs vế của (1),(2) và (3) ta đc \(\dfrac{x^{2}}{y+z}+\dfrac{y^{2}}{z+x}+\dfrac{z^{2}}{x+y}=0\)

28 tháng 10 2022

a: =>x^2+y^2+z^2-4x+2y-6z+14=0

=>x^2-4x+4+y^2+2y+1+z^2-6z+9=0

=>(x-2)^2+(y+1)^2+(z-3)^2=0

=>x=2; y=-1; z=3

b: \(\left(x+y+z\right)\cdot\left(xy+yz+xz\right)\)

\(=x^2y+xyz+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2\)

\(=x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+3xyz\)

Theo đề, ta có:

\(x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+2xyz=0\)

\(\Leftrightarrow x^2y+2xyz+yz^2+xy^2+2xzy+xz^2+zx^2-2xyz+zy^2=0\)

\(\Leftrightarrow y\left(x+z\right)^2+x\left(y+z\right)^2+z\left(x+y\right)^2=0\)

=>x=y=z=0

=>x^2013+y^2013+z^2013=(x+y+z)^2013

3 tháng 7 2018

a/ +) \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}\)\(\left(1\right)\)

+) \(\dfrac{y}{3}=\dfrac{z}{5}\Leftrightarrow\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Leftrightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

Vậy ..

b/ \(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Theo t/c dãy tỉ số bằng nhau tcos :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\\\dfrac{y}{10}=5\\\dfrac{z}{6}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=50\\z=30\end{matrix}\right.\)

Vậy..

c/ tương tự

3 tháng 7 2018

bạn có thể giải cho mik phần c đc ko