Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)
Đặt \(\sqrt{x}=t\)
\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)
a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)
\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
a) Tại x=16 thì A = \(\dfrac{\sqrt{16}-1}{\sqrt{16}+2}=\dfrac{4-1}{4+2}=\dfrac{1}{2}\)
b) B = \(\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
= \(\dfrac{\sqrt{x}+1+x-\sqrt{x}}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)
= \(\dfrac{x+1}{\sqrt{x}}\)
B = \(\dfrac{x+1}{\sqrt{x}}\)= 2
⇒ x + 1 = 2\(\sqrt{x}\)
⇒ x - \(2\sqrt{x}\) +1 = 0
⇒ \(\left(\sqrt{x}-1\right)^2\) = 0
⇒ \(\sqrt{x}-1=0\)
⇒ x = 1
a) đk: \(x\ne0;4\); \(x>0\)
P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b) Để P < \(\dfrac{1}{2}\)
<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)
<=> \(\sqrt{x}< 2\)
<=> x < 4
<=> 0 < x < 4
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có : \(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)
\(=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2-x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b, Ta có : \(P=-x+\sqrt{x}=-x+\dfrac{2.\sqrt{x}.1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Vậy \(Max=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{4}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a.
\(A=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(1-x)^2}{2(x+2\sqrt{x}+1)}=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2(\sqrt{x}+1)^2}{2(\sqrt{x}+1)^2}\)
\(=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2}{2}=\frac{2\sqrt{x}-2x}{2}=\sqrt{x}-x\)
b.
$\sqrt{x}-x=\frac{1}{4}-(x-\sqrt{x}+\frac{1}{4})$
$=\frac{1}{4}-(\sqrt{x}-\frac{1}{2})^2$
$\leq \frac{1}{4}$
Vậy GTLN của biểu thức là $\frac{1}{4}$. Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$ (thỏa đkxđ)
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)
ĐKXĐ: x>=0; x<>1
a: \(B=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left(\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\right)\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left[\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\left(x-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b: Khi x=4-2căn 3=(căn 3-1)^2 thì \(B=\dfrac{\sqrt{3}-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{\sqrt{3}}=\dfrac{3-\sqrt{3}}{3}\)
c: B=2/3
=>căn x/căn x+1=2/3
=>căn x=2
=>x=4
d: \(B-1=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-\dfrac{1}{\sqrt{x}+1}< 0\)
=>B<1
e: B>1
=>-1/căn x+1>0
=>căn x+1<0(vô lý)
=>KO có x thỏa mãn
f: B nguyên khi căn x chia hết cho căn x+1
=>căn x+1-1 chia hết cho căn x+1
=>căn x+1=1 hoặc căn x+1=-1(loại)
=>căn x=0
=>x=0
Lời giải:
ĐKXĐ: $x>0$
a. \(P=\frac{x-1}{\sqrt{x}}:\left[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x-1}{\sqrt{x}}:\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{(\sqrt{x}+1)^2}{\sqrt{x}}\)
b.
\(x=\frac{4}{4+2\sqrt{3}}=(\frac{2}{\sqrt{3}+1})^2\Rightarrow \sqrt{x}=\frac{2}{\sqrt{3}+1}\)
\(P=\frac{(\frac{2}{\sqrt{3}+1}+1)^2}{\frac{2}{\sqrt{3}+1}}=\frac{3+3\sqrt{3}}{2}\)
a: Ta có: \(P=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)
a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)
=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)
check giùm mik