Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ne\left\{-\frac{2}{3};\frac{1}{3}\right\}\)
\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow3x=-15\Rightarrow x=-5\)
b/ ĐKXĐ: \(x\ne\left\{-\frac{4}{3};1\right\}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)
\(\Leftrightarrow44x=-33\Rightarrow x=-\frac{3}{4}\)
c/ ĐKXĐ: \(x\ne\left\{-\frac{1}{4};0\right\}\)
\(\Leftrightarrow\frac{3\left(x^2-1\right)}{4x+1}+\frac{2\left(1-x^2\right)}{x}-\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{3}{4x+1}-\frac{2}{x}-1\right)=0\)
TH1: \(x^2-1=0\Rightarrow x=\pm1\)
TH2: \(\frac{3}{4x+1}-\frac{2}{x}-1=0\Leftrightarrow3x-2\left(4x+1\right)-x\left(4x+1\right)=0\)
\(\Leftrightarrow4x^2+6x+2=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\x\ne2\\x\ne\frac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)
Đặt \(x^2-x-1=a\) ta được:
\(\frac{4}{a-1}+\frac{2}{a}=5\Leftrightarrow4a+2\left(a-1\right)=5a\left(a-1\right)\)
\(\Leftrightarrow5a^2-11a+2=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x-1=2\\x^2-x-1=\frac{1}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\5x^2-5x-6=0\end{matrix}\right.\) (bấm máy)
b/ ĐKXĐ: \(x>2\)
Đặt \(\sqrt{x-2}=a>0\)
\(\frac{4}{a+1}-\frac{1}{a}=1\Leftrightarrow4a-\left(a+1\right)=a\left(a+1\right)\)
\(\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)
\(\Rightarrow\sqrt{x-2}=1\Rightarrow x=3\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\frac{4}{9}\end{matrix}\right.\)
\(\Leftrightarrow4\left(2-3\sqrt{x}\right)-\left(\sqrt{x}+1\right)=3\left(\sqrt{x}+1\right)\left(2-3\sqrt{x}\right)\)
\(\Leftrightarrow9x-10\sqrt{x}+1=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=\frac{1}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{81}\end{matrix}\right.\)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
\(\Leftrightarrow\frac{\left(x+1\right)+a\left(b+1\right)}{\left(a+1\right)}+\frac{\left(x+1\right)+c\left(b+1\right)}{\left(c+1\right)}+\frac{\left(x+1\right)+b\left(b+1\right)}{\left(b+1\right)}=3\left(b+1\right)\)
\(\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\left(x+1\right)=\left(b+1\right)\left(3-\frac{a}{a+1}-\frac{b}{b+1}-\frac{c}{c+1}\right)\)
\(\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\left(x+1\right)=\left(b+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=A=0\) pt N0 đúng mọi x. thuộc R
Nếu A khác 0 pt có nghiệm duy nhất x=b