Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
b, Áp dụng hệ thức lượng vào trong tam giác vuông AHB
ta có : \(AH^2=AE.AB\left(1\right)\)
ÁP dụng hệ thức lượng vào trong tam giác vuông AHC
Ta có : \(AH^2=AF.AC\left(2\right)\)
Từ (1) , (2) \(\Rightarrow AB.AE=AC.AF\left(đpcm\right)\)
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=25/7
=>BD=75/7cm; CD=100/7cm
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
c: AI*AB=AK*AC
=>AI/AC=AK/AB
=>ΔAIK đồng dạng với ΔACB
xét tam giác HMB vuông tại M va tam giác CHA vuông tại Hcó
góc BHM =góc HCA (MH//AC,cùng vuông góc AB)
=> tam giác HMB đồng dạng tam giác CHA (g-g)
=> BH/AC=BM/AH
tương tự cm tam giác AHB đồng dạng tam giác CNH (g-g)
=> AH/CN=AB/HC
tam giác ABC vuông tại A=> AB^2=BH.BC (hệ thức lượng tam giác vuông)
tam giác ABC vuong tại A=> AH.BC=AB.AC=> AB=AH.BC/AC (hệ thức lượng tam giác vuong)
=> \(AB^3=BH.BC.\frac{AH.BC}{AC}=\frac{BH.AH.BC^2}{AC}\)
tương tự ta cm được \(AC^3=\frac{BC^2.HC.AH}{AB}\)
=> \(\frac{AB^3}{AC^3}=\frac{BH.AH.BC^2}{AC}.\frac{AB}{BC^2.AH.HC}=\frac{BH}{AC}\frac{AB}{HC}=\frac{BM}{AH}.\frac{AH}{CN}=\frac{BM}{CN}\left(đpcm\right).\)