Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) sai đề nhé bạn.
b) Ta có:
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\) và \(2x+5y-2z=100\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(2x+5y-2z=100\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{2x+5y-2z}{2.7+5.20-2.32}=\frac{100}{50}=2\)
\(\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=2.7=14\\\frac{y}{20}=2\Rightarrow y=2.20=40\\\frac{z}{32}=2\Rightarrow z=2.32=64\end{cases}}\)
Vậy \(x=14;y=40;z=64\)
x/6 = y/5 \(\Rightarrow\)x/12 = y/10
x/4 = z/7 \(\Rightarrow\)x/12 = x/21
Vì x/12 =y/10 ; x/12= z/21
\(\Rightarrow\)x/12 = y/10 = z/21
Ta có : x/12 = 2x/24
y/10 = 3y/30
Áp dụng tính chất của dãy tỉ sô bằng nhau ta có :
2x/24 = 3y/30= z/21 = 2x -3y + z / 24 - 30 + 21 = 75/ 15= 5
Ta có : x/12 = 5 \(\Rightarrow\)x = 5 x 12 = 60
y/10 =5 \(\Rightarrow\)y = 5 x 10 = 50
z/21 = 5 \(\Rightarrow\)z = 21 x 5 = 105
Vậy x = 60
y = 50
z = 105
\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)
\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)
Vậy: a = 42
b = 28
c = 20
Bài 1:
a)
Ta có: \(\frac{a}{3}=\frac{b}{2}\)
\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)
Và: \(\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)
=> \(\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)
+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)
+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)
+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)
Vậỵ:..........
b)
Ta có: 7a = 9b = 21c
=> 7a/63 = 9b/63 = 21c/63
=> a/9 = b/7 = c/3
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3
+) a/9 = -3 => a = -27
+) b/7 = -3 => b = -21
+) c/3 = -3 => c = -9
Vậy:..............
Bài 2:
a) Theo bài: x:y:z = 5:3:4
=> x/5 = y/3 = z/4
Áp dụng tính chất dãy tiwr số bằng nhau; ta có:
x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11
+) Với x/5 = -11 => x=-55
+) Với y/3 = -11 => y = -33
+) Với z/4 = -11 => z = -44
Vậy:......
b) _ Tương tự câu a) ở bài 1
c)
Ta đặt: x/3 = y/12 = z/5 = k ( \(k\inℤ\))
=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)
Theo bài: xyz = 22,5
=> 3k.12k.5k = 22,5
=> 180.k3 = 22,5
=> k3 = 1/8 = (1/2)3
=> k = 1/2
Với k = 1/2 => x = 3/2; y = 6; z = 5/2
Vậy:..........
d)
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(12x-15y=0\Rightarrow4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\)
\(20z-12x=0\Rightarrow5z=3x\Rightarrow\frac{z}{3}=\frac{x}{5}\)
\(15y-20z=0\Rightarrow3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
ta có;x=4x5=20
y=4x4=16
z=4x3=12
sde dQTYTWAYEGFSAYEFGEYSARR WAFWIUFB A RR qiiRY ii yÌU ẨU YIUWYR URH Y Y2QUR2QGyrg Y4
KQWFJ | Ị |
Ị | Ị |
Ị | Ị |
ỊIW | FU |
ÌUEI | F |
ỊU | ÌU |
I | ÌUI |
FUI | ÙI |
Ù | 8FU |
ÌU | ÌU |
Ì | ÌU |
ÌU | ÌU |
ÌU | Ì |
Ì | IUI |
I | |
I | I |
I | FI |
I | Ì |
Ì | ÙIU |
Ì | IUFI |
I | I |
I | |
IU | IU |
Ì | FIF |
IU | UI |
U | FJ |
JFI | FUFNUFYFFTCBBYY |
7 | |
7 | ỲB |
FYD | YC87BBDYBUDYYY |
Y | |
7FYTF7 | YB7BDYD7OYBE |
Y | 7 |
YD7DY7YB | 7 YB |
ED7 | YE7 |
YD87 | BEY |
7BE8 | YDU |
E7E | YEQY7 |
7YYE7 | YE7 |
YE | 7WY |
7 | 7WY |
7 | YWWY |
7 | |
78YW7 | Y 7W |
YW7 | ƯY |
7EY | 7EYE7BEY |
7EE7 | BYE |
7EY | E7 |
YE7Y 7 | Y |
7EYB | 7EY |
7EY | 7E |
Ta có \(\frac{x}{3}=\frac{2x}{2.3}=\frac{2x}{6}\), \(\frac{z}{9}=\frac{3z}{9.3}=\frac{3z}{27}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{6}=\frac{y}{7}=\frac{3z}{27}=\frac{2x+y-3z}{6+7-27}=\frac{-28}{-14}=2\)
\(\frac{2x}{6}=2\Rightarrow x=6\)
\(\frac{y}{7}=2\Rightarrow y=14\)
\(\frac{3z}{27}=2\Rightarrow z=18\)
Vậy x=6, y=14, z=18
\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{7}=\frac{z}{9}\\2x+y-3z=-28\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{y}{7}=\frac{3z}{27}\\2x+y-3z=-28\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{y}{7}=\frac{3z}{27}=\frac{2x+y-3z}{6+7-27}=\frac{-28}{-14}=2\)
\(\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{z}{9}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot7=14\\z=2\cdot9=18\end{cases}}\)
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
\(TC:\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(KĐ:\) \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\cdot9=-27\\y=-3\cdot7=-21\\z=-3\cdot3=-9\end{matrix}\right.\)
bai nay cung kho lam