K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

20 tháng 4 2021

Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))

4 tháng 5 2021

cau co cau tra loi chx 

6 tháng 4 2023

Xét ΔABC vuông tại A, áp dụng định lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

         \(=21^2+28^2\)

         \(=1225\)

->\(BC=\sqrt{1225}=35\left(cm\right)\)

Xét ΔABC có AD là tia phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{21}{BD}=\dfrac{28}{CD}=\dfrac{21+28}{35}=\dfrac{7}{5}\)

\(BD=\dfrac{21.5}{7}=15\left(cm\right)\)

\(CD=\dfrac{28.5}{7}=20\left(cm\right)\)

 

BC=căn 3^2+4^2=5cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4

=>BD/3=CD/4=5/7

=>BD=15/7cm; CD=20/7cm

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

4 tháng 5 2021

cau co cau  tra loi chx

11 tháng 3 2021

Xét \(\Delta ABC\) vuông tại A có \(AB^2+AC^2=BC^2\) (định lý Pytago)

\(\Rightarrow BC^2=12^2+16^2=20^2\Rightarrow BC=20\).

Theo tính chất đường phân giác trong tam giác ABC ta có:

\(\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{CD+BD}{AC+AB}=\dfrac{BC}{AC+AB}=\dfrac{20}{12+16}=\dfrac{5}{7}\Rightarrow BD=\dfrac{60}{7};CD=\dfrac{80}{7}\).

Ta có \(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{5}\).

Từ đó \(BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-\left(\dfrac{48}{5}\right)^2}=\dfrac{36}{5}\).

Suy ra \(HD=\left|BD-BH\right|=\left|\dfrac{48}{5}-\dfrac{36}{5}\right|=\dfrac{12}{5}\).

\(AD=\sqrt{AH^2+HD^2}=\dfrac{12\sqrt{17}}{5}\).

15 tháng 3 2022

\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{B}chung.\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b.\) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AH.BC=AB.AC\) (Hệ thức lượng).

\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)