Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=14\\2x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=5-2x=5-2\cdot2=1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}-x+2y=2\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x+4y=4\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=3\\x-2y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=1\\x=-2+2y=-2+2\cdot1=0\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}2x-y=13\\y-5=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=13\\y=-7+5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+13=-2+13=11\\y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{11}{2}\\y=-2\end{matrix}\right.\)
d: \(\left\{{}\begin{matrix}3x+y=8\\2x-3y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9x+3y=24\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=25\\3x+y=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{25}{11}\\y=8-3x=8-3\cdot\dfrac{25}{11}=8-\dfrac{75}{11}=\dfrac{13}{11}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x+y=8\left(1\right)\\2x-3y=1\left(2\right)\end{matrix}\right.\)
Từ (1) \(3x+y=8\Rightarrow y=8-3x\) (3)
Thế (3) vào (2):
\(2x-3\left(8-3x\right)=1\)
\(\Leftrightarrow11x=25\)
\(\Rightarrow x=\dfrac{25}{11}\)
Thế x vào (3) \(\Rightarrow y=8-\dfrac{3.25}{11}=\dfrac{13}{11}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\dfrac{25}{11};\dfrac{13}{11}\right)\)
b)\(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2\left(5-2x\right)=4\\y=5-2x\end{matrix}\right.\)\(\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x-10+4x=4\\y=5-2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=14\\y=5-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy nghiệm duy nhất của hpt là: (2;1)
c) \(\left\{{}\begin{matrix}2y-x=2\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\2\left(2y-2\right)-y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\4y-4-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy nghiệm duy nhất của hpt là: (0;1)
a) \(\left\{{}\begin{matrix}x+2y=2\left(1\right)\\-2x+y=1\left(2\right)\end{matrix}\right.\)
Từ (1): \(x=2-2y\) (3)
Thế (3) vào (2), ta được: \(-2\left(2-2y\right)+y=1< =>-4+4y+y=1\)
\(\Leftrightarrow y=1\)\(\Rightarrow\)\(x=2-2.1=0\)
Vậy nghiệm duy nhất của hpt là: (0;1)
\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\)
\(=\left(\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\right).\left(1-4x\right)\)
\(=\left(\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\right)\left(1-4x\right)\)
\(=\dfrac{-4\sqrt{x}.\left(4x-1\right)}{4x-1}=-4\sqrt{x}\)
\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\left(dkxd:x\ge0;x\ne\dfrac{1}{4}\right)\)
\(=\left[\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right]\cdot\left(1-4x\right)\)
\(=\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\cdot\left[-\left(4x-1\right)\right]\)
\(=4\sqrt{x}\cdot\left(-1\right)\)
\(=-4\sqrt{x}\)
Thay x=2 và y=6 vào (d), ta được:
4(n+1)-2n=6
=>4n+4-2n=6
=>2n+4=6
=>2n=2
=>n=1
Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`
`<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`
`<=>m^2+m+3 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`
`<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`
`=>x_1+x_2-2x_1.x_2=6`
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=6\\2x-y=3\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(\dfrac{3}{2};0\right)\)