K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Bài 1: 

b: Xét ΔBDC vuông tại B có BH là đường cao

nên \(HC\cdot HD=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HD=BE\cdot BC\)

4 tháng 6 2021

undefined

19 tháng 8 2023

giúp mình câu c câu d với

17 tháng 1 2022

a) \(\left\{{}\begin{matrix}mx+y=1.\\x+my=m+1.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-mx.\\x+m\left(1-mx\right)=m+1.\left(1\right)\end{matrix}\right.\) 

Xét (1): \(x+m\left(1-mx\right)=m+1.\Leftrightarrow x+m-m^2x-m-1=0.\Leftrightarrow\left(1-m^2\right)x-1=0.\left(2\right)\)

Để hệ phương trình có nghiệm duy nhất. \(\Leftrightarrow\) (2) có nghiệm duy nhất. 

\(\Leftrightarrow1-m^2\ne0.\Leftrightarrow m^2\ne1.\Leftrightarrow m\ne\pm1.\)

b) Để hệ phương trình có vô số nghiệm. \(\Leftrightarrow\) (2) có vô số nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1=0.\end{matrix}\right.\) (vô lý).

\(\Rightarrow m\in\phi\).

c) Để hệ phương trình có vô nghiệm. \(\Leftrightarrow\) (2) có vô nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1\ne0.\end{matrix}\right.\)\(\Leftrightarrow1-m^2=0.\Leftrightarrow m^2=1.\Leftrightarrow m=\pm1.\)

 

Câu 1: 

1: Ta có: \(A=3\sqrt{25}-\sqrt{36}-\sqrt{64}\)

\(=3\cdot5-6-8\)

\(=15-6-8=1\)

Câu I:

2: Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{x+1}{x-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-1}{x-1}=1\)

4 tháng 6 2021

\(A=\dfrac{x+y+2\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x-y}{\sqrt{x}+\sqrt{y}}\left(x,y>0\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)\)

\(=2\sqrt{y}\)

\(B=\dfrac{x+y-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-\dfrac{x-y}{\sqrt{x}+\sqrt{y}}\left(x,y>0\right)\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\left(\sqrt{x}-\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)\)

\(=0\)

 

4 tháng 6 2021

\(C=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}\sqrt{y}}\left(x,y>0\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}=\sqrt{x}+\sqrt{y}+\sqrt{x}+\sqrt{y}\)

\(=2\left(\sqrt{x}+\sqrt{y}\right)\)

\(D=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\left(x,y>0\right)\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{xy}\left(\sqrt{y}-\sqrt{x}\right)}{\sqrt{xy}}=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)

31 tháng 12 2023

Câu 4:

1: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=\left(20a\right)^2+\left(21a\right)^2=841a^2\)

=>\(BC=\sqrt{841a^2}=29a\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot29a=\left(20a\right)^2=400a^2\)

=>\(BH=\dfrac{400}{29}a\)

2: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

=>\(tanBAM=tanABM=tanABC=\dfrac{AC}{AB}=\dfrac{21}{20}\)

Câu 5:

1: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>BD\(\perp\)DA tại D

=>BD\(\perp\)AC tại D

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE\(\perp\)EB tại E

=>AE\(\perp\)BC tại E

Xét ΔCAB có

AE,BD là các đường cao

AE cắt BD tại H

Do đó: H là trực tâm của ΔCAB

=>CH\(\perp\)AB

2:

Gọi giao điểm của CH với AB là K

=>CH\(\perp\)AB tại K

Ta có: ΔCDH vuông tại D

mà DF là đường trung tuyến

nên FH=FD=FC

\(\widehat{FDO}=\widehat{FDH}+\widehat{ODB}\)

\(=\widehat{OBD}+\widehat{FHD}\)

\(=\widehat{KHB}+\widehat{KBH}=90^0\)

=>FD\(\perp\)DO tại D

=>FD là tiếp tuyến của (O)

31 tháng 12 2021

Bài 2: 

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp