K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

BẠn vẽ hình nha

đề của bạn có xíu vần đề nhưng mk cx hiểu đc oy nếu có nhầm đỉnh bạn sửa nha

Dễ c/m được tứ giác SPAM nội tiếp( do SMA=SPA =90)

nên ta được PMA=PSA (cùng chắn cung PA)

Áp dụng định lý ta lét , ta có:

\(\frac{MF}{PS}=\frac{BW}{PB}=\frac{WM}{PS'}\Rightarrow PS=PS'\)

nên  SAS' cân tại A hay ASS'=AS'S

nên ta có : PMS'=PS'M hay S'P=PM

OP là trung trực của MM' nên PM=PM'

nên S'P=PM' hay PS'M' cân tại P

b)

Dễ thấy :

PSM=SMP và OMB=OBM 

mà PSM+MBO=90

nên PMS+OMB=90

nên PMO=90

hay PM là tiếp tuyến của (O)

Chúc bạn học tốt nha ^-^

27 tháng 5 2020

bạn huyền ơi cái đề này lm j có chỗ nào là w đâu

21 tháng 11 2017

O B A C M N P Q I K

a) Do AMNP là hình vuông nên \(\widehat{QMB}=45^o\)

Lại có do C là điểm chính giữa của nửa đường tròn nên \(\widebat{CB}=90^o\Rightarrow\widehat{CMB}=45^o\)

(Góc nội tiếp)

Vậy thì \(\widehat{CMQ}=\widehat{CMB}+\widehat{BMQ}=45^o+45^o=90^o\)

Vậy CQ là đường kính hay C và Q đối xứng nhau qua O.

b) Ta thấyAMNP là hình vuông.  MI là phân giác góc \(\widehat{AMB}\)  nên \(\Delta MAI=\Delta MNI\left(c-g-c\right)\Rightarrow\widehat{MAI}=\widehat{MNI}\)

Lại có \(\widehat{MAI}=\widehat{IAM}\) nên \(\widehat{MNI}=\widehat{IAM}\)

Xét tứ giác AINB có  \(\widehat{MNI}=\widehat{IAM}\) nên AINB là tứ giác nội tiếp (góc ngoài tại đỉnh bằng góc đối diện)

4 tháng 4 2022

a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)

⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)

Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)

⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)

⇒⇒ cung CE = cung MB

mà cung MB=cung AM (do M là điểm chính giữa của cung AB)

⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và

ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân

 

b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB

CH⊥ABCH⊥AB (giả thiết)

⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)

ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)

Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^

⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)

icon

a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)

⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)

Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)

⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)

⇒⇒ cung CE = cung MB

mà cung MB=cung AM (do M là điểm chính giữa của cung AB)

⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và

ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân

 

b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB

CH⊥ABCH⊥AB (giả thiết)

⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)

ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)

Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^

⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)

image 
20 tháng 2 2017

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)

Kiến thức áp dụng

+ Góc nội tiếp chắn nửa đường tròn là góc vuông.

+ Trong một tam giác, ba đường cao đồng quy tại trực tâm.