Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 18n+3 và 21n+7 cùng rút gọn được cho số nguyên tố p
suy ra 6(21n+7) - 7(18n+3) chia hết cho p hay 21 chia hết cho p
vậy p thuộc {3;7}. nhưng 21n +7 không chia hết cho 3 nên suy ra 18n+3 chia hết cho 7
do đó 18n +3 -21 chia hết cho 7 hay 18(n-1) chia hết cho 7.từ đó n-1 chia hết cho 7
vậy n=7k +1 (k thuộc N) thì phân số 18n+3/21n+7 có thể rút gọn được.
BÀI NÀY MK BIẾT LÀM NHƯNG KO BIẾT CÁCH TRÌNH BÀY THÔI
BAN CHƯA RÚT GỌN HẲN
Ta có: \(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)
Do (3;7)=(6n+1;3n+1)=(3;3n+1)=1
=> Phân số có thể rút gọn khi 6n+1 chia hết cho 7
Mà 6n+1=7n-(n-1)
=> n-1 chia hết cho 7
=> n=7k+1 thì phân số có thể rút gọn
=> n=7k+2; 7k+3; 7k+4; 7k+6; 7k+6 thì phân số có thể rút gọn
Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n+7)−7(18n+3)⋮d→21⋮d→d∈{3;7}. Hiển nhiên d≠3 vì 21n+7 không chia hết cho 3.
Để (18n+3,21n+7)=1 thì d≠7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7↔18(n−1) không chia hết cho 7↔n−1 không chia hết cho 7↔n≠7k+1(k∈n)
Kết luận: Với n≠7k+1(k∈N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.
\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1
đúng k
giả sử \(\frac{18n+3}{21n+7}\)không tối giản
gọi \(d\inƯC\left(18n+3;21n+7\right)\)
18n+3 chia hết cho d=>126n+21 chia hết cho d
21n+7 chia hết cho d=>126n+42 chia hết cho d
=>21 chia hết cho d=>d=3;7
xét d=3=>21n+7 chia hết cho 3 (loại)
=>d=7=>36n+6 chia hết cho 7=>35d+(n+6) chia hết cho 7
=>n+6 chia hết cho 7=>n-1 =7k=>n=7k+1
vậy để \(\frac{18n+3}{21n+7}\)tối giản thì \(n\ne7k+1\)