Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)
b) Để A= B
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)
\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)
Vậy x>3 thì A=B
a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)
ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)
a) √54 = √9.6 = 3√6
b) √108 = √36.3 = 6√3
c) 0,1√20000 = 0,1√10000.2= 0,1.100√2 = 10√2
d) -0,05.√28800 = -0,05.√14400.2 = -0,05.120√2 = -6√2
e)√7.63.a2 = √7.7.9.a2 = 7.3|a| = 21|a|
a: \(=\sqrt{9\cdot6}=3\sqrt{6}\)
b: \(=\sqrt{36\cdot3}=6\sqrt{3}\)
c: \(=\dfrac{1}{10}\cdot\sqrt{10000\cdot2}=\dfrac{1}{10}\cdot100\cdot\sqrt{2}=10\sqrt{2}\)
d: \(=-\dfrac{1}{20}\cdot\sqrt{14400\cdot2}=-\dfrac{1}{20}\cdot120\cdot\sqrt{2}=-6\sqrt{2}\)
e: \(=\sqrt{7\cdot7\cdot9\cdot a^2}=21\left|a\right|\)
b)\(\sqrt{17-12\sqrt{2}}\)
=\(\sqrt{9-2.3.2\sqrt{2}+8}\)
=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(3-2\sqrt{2}\)
Câu 1. Biến đổi biểu thức trong căn thành một bình phương một tổng hay một hiệu rồi từ đó phá bớt một lớp căn
a/\(\sqrt{41+12\sqrt{5}}\)
1, \(\sqrt{8+2\sqrt{15}}=\sqrt{8+2\sqrt{5.3}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
2, \(\sqrt{15-2\sqrt{14}}=\sqrt{14-2\sqrt{14}+1}=\sqrt{\left(\sqrt{14}-1\right)^2}=\sqrt{14}-1\)
3, \(\sqrt{21+8\sqrt{5}}=\sqrt{21+2.4\sqrt{5}}=\sqrt{16+2.4\sqrt{5}+5}\)
\(=\sqrt{\left(4+\sqrt{5}\right)^2}=4+\sqrt{5}\)
a, \(\sqrt{3+2\sqrt{2}}=\sqrt{\sqrt{2}^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+1\right|=\sqrt{2}+1\)
b, \(\sqrt{3-2\sqrt{2}}=\sqrt{\sqrt{2}^2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
c, \(\sqrt{8-2\sqrt{15}}=\sqrt{\sqrt{5}^2-2\sqrt{5.3}+\sqrt{3}^2}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)
a. \(\sqrt{13^2-12^2}\)
=\(\sqrt{\left(13+12\right).\left(13-12\right)}\)
=\(\sqrt{25.1}\)
=\(\sqrt{25}.\sqrt{1}\)
=5.1
=5
b. \(\sqrt{17^2-8^2}\)
=\(\sqrt{\left(17+8\right).\left(17-8\right)}\)
=\(\sqrt{25.9}\)
=\(\sqrt{25}.\sqrt{9}\)
=5.3
=15
c. \(\sqrt{117^2-108^2}\)
=\(\sqrt{\left(117+108\right).\left(117-108\right)}\)
=\(\sqrt{225.9}\)
=\(\sqrt{225}.\sqrt{9}\)
=15.3
=45
d. \(\sqrt{313^2-312^2}\)
=\(\sqrt{\left(313+312\right).\left(313-312\right)}\)
=\(\sqrt{625.1}\)
=\(\sqrt{625}.\sqrt{1}\)
=25.1
=25
c.\(\sqrt{117^2-108^2}\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
A=\(\sqrt{7+4\sqrt{3}}\) =\(\sqrt{2^2+2.2\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)