K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

Gọi số sản phẩm mỗi ngày dự định làm là x

Theo đề, ta có: 600/x-630/x+10=9

=>\(\dfrac{600x+6000-630x}{x\left(x+10\right)}=9\)

=>9x^2+90x=-30x+6000

=>x=20

10 tháng 6 2021

câu 2 phần 2:

\(\left\{{}\begin{matrix}4x+3y=11\\4x-y=7\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}4y=4\\4x-y=7\end{matrix}\right.< =>\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\).Vậy hệ pt có nghiệm

(x,y)=(2;1)

caau3 phần 2:

\(x^2-2x+m-1=0\)(1)

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)

để pt (1) có 2 nghiệm x1,x2<=>\(\Delta'\ge0< =>2-m\ge0< =>m\le2\)

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2\left(1\right)\\x1.x2=m-1\left(3\right)\end{matrix}\right.\)

có: \(x1^4\)\(-x1^3=x2^4-x2^3\)

\(< =>x1^4-x2^4-x1^3+x2^3=0\)

\(< =>\left(x1^2-x2^2\right)\left(x1^2+x2^2\right)-\left(x1^3-x2^3\right)\)\(=0\)

\(< =>\left(x1-x2\right)\left(x1+x2\right)\left[\left(x1+x2\right)^2-2x1x2\right]\)\(-\left(x1-x2\right)\left(x1^2+x1x2+x^2\right)=0\)

\(< =>\)\(\left(x1-x2\right)\left[2.2^2-2\left(m-1\right)-\left(x1^2+x1x2+x2^2\right)\right]=0\)

\(< =>.\left(x1-x2\right)\left[8-2m+2-\left(x1+x2\right)^2+x1x2\right]=0\)

<=>\(\left(x1-x2\right)\left[10-2m-4+m-1\right]=0\)

\(< =>\left(x1-x2\right)\left(5-m\right)=0\)

\(=>\left[{}\begin{matrix}x1-x2=0\\5-m=0\end{matrix}\right.< =>\left[{}\begin{matrix}x1=x2\left(2\right)\\m=5\left(loai\right)\end{matrix}\right.\)

thế(2) vào(1)=>\(x1=x2=1\left(4\right)\)

thế (4) vào (3)=>\(m-1=1=>m=2\left(TM\right)\)

vậy m=2 thì....

27 tháng 10 2021

Bài 4: 

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

27 tháng 10 2021

undefined

\(TanB=\dfrac{AC}{AB}\Rightarrow Tan30^o=\dfrac{AC}{4,5}\Rightarrow AC=Tan30^o.4,5=\dfrac{3\sqrt{3}}{2}\left(m\right)\)

\(CosB=\dfrac{AB}{BC}\Rightarrow Cos30^o=\dfrac{4,5}{BC}\Rightarrow BC=Cos30^o.4,5=\dfrac{9\sqrt{3}}{4}\)

Chiều cao ban đầu của cây tre là: \(\dfrac{3\sqrt{3}}{2}+\dfrac{9\sqrt{3}}{4}=\dfrac{15\sqrt{3}}{4}\approx6,5\left(m\right)\)

 

2 tháng 4 2022

Gọi a (km/h) và b (km/h) lần lượt là vận tốc của người thứ nhất và vận tốc của người thứ hai. ĐK: b>a>0.

Quãng đường người thứ nhất đi được trong 1h30'=1,5h là 1,5a km.

Quãng đường người thứ hai đi được trong 1h15'=1,25h là 1,25b km.

Ta có: 1,5a+1,25b=90 (1).

Vận tốc của người thứ hai hơn vận tốc người thứ nhất 6 km/h, ta có b-a=6 (2).

Giải hệ phương trình gồm (1) và (2), ta suy ra a=30 (nhận) và b=36 (nhận).

Vậy vận tốc của người thứ nhất là 30 km/h, vận tốc của người thứ hai là 36 km/h.

Câu 2: 

Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)

a=1; b=-2m-2; \(c=m^2+4\)

\(\text{Δ}=b^2-4ac\)

\(=\left(-2m-2\right)^2-4\cdot\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16\)

=8m-12

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow8m>12\)

hay \(m>\dfrac{3}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)

Vì x1 là nghiệm của phương trình nên ta có: 

\(x_1^2-2\left(m+1\right)\cdot x_1+m^2+4=0\)

\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta có: \(x_1^2+2\left(m+1\right)x_2=2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2-2m^2-20=0\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)

\(\Leftrightarrow2\left(m+1\right)\cdot\left(2m+2\right)-3m^2-24=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)

\(\Leftrightarrow m^2+8m-20=0\)

Đến đây bạn tự tìm m là xong rồi

23 tháng 7 2021

Cảm ơn b nha

8 tháng 3 2018

Nếu là đề chứng minh thì : 

<=> \(\sqrt{a}\ge\sqrt{a}-3\)

<=> \(3\ge0\) ( luôn đúng ) đpcm

8 tháng 3 2018

Còn nếu là tìm a thì vì biểu thức luôn đúng nên :

\(\hept{\begin{cases}a\inℝ\\a\ne9\end{cases}}\)

22 tháng 5 2018

\(4\sqrt{2}x^2-6x-\sqrt{2}=0\) \(0\)

\(\left(a=4\sqrt{2};b=-6;b'=-3;c=-\sqrt{2}\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(-3\right)^2-4.\left(-\sqrt{2}\right)\)

\(=9+4\sqrt{2}\)

\(\sqrt{\Delta}=\sqrt{9+4\sqrt{2}}\)

Vay : phương trình có 2 nghiệp phân biệt

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{3+\sqrt{9+4\sqrt{2}}}{4\sqrt{2}}\) 

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{3-\sqrt{9+4\sqrt{2}}}{4\sqrt{2}}\)

c: Ta có: \(x_1^2+x_2^2>4\)

\(\Leftrightarrow\left(m+2\right)^2-2\cdot2m>4\)

\(\Leftrightarrow m^2>0\)

=>m<>0

4 tháng 3 2022

Viết rõ ra đi bạn

c) Ta có: \(13=\sqrt{169}\)

\(\sqrt{12\cdot14}=\sqrt{168}\)

mà 169>168

nên \(13>\sqrt{12}\sqrt{14}\)