Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)
b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)
c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)
=x2-2xy+y2+4y2+4y+1+2
=(x-y)2+(2y+1)2+2\(\ge2\)
dấu bằng xảy ra khi x=y=-1/2
\(A=2x^2+5y^2-2xy+2y+2x\)
\(2A=4x^2+10y^2-4xy+4y+4x\)
\(2A=\left(4x^2-4xy+y^2\right)+9y^2+4y+4x\)
\(2A=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(9y^2+6y+1\right)-2\)
\(2A=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\)
Do \(\left(2x-y+1\right)^2\ge0\)
\(\left(3y+1\right)^2\ge0\)
\(\Rightarrow2A\ge-2\)
\(\Leftrightarrow A\ge-1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x-y+1=0\\3y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-1}{3}\end{cases}}\)
Vậy ...
\(A=x^2-2xy+y^2+x^2+2x+1+y^2+2y+1+3y^2-2\)
\(A=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\)
\(Do\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2>=0\)
\(nenA>=-2\)
vậy gtnn của A là -2
A=( x^2-2xy+y^2)+(4y^2-12y+9)+2
A=(x-y)^2+(2y-3)^2+2
Vì \(\left(x-y\right)^2\ge0\forall x\)
\(\left(2y-3\right)^2\ge0\forall x\)
->(x+y)^2+(2y+3)+2\(\ge2\forall x\)
Dấu = xẩy ra <=> \(\hept{\begin{cases}x-y=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1,5\\y=1,5\end{cases}}\)
Vậy Min A là 2<=> x=1,5 và y=1,5