Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
a: Vì (d1)//(d) nên a=2
=>y=2x+b
Khi x=2 thì y=-1/2*2^2=-2
Thay x=2 và y=-2 vào (d1), ta được;
b+4=-2
=>b=-6
b:
b: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
Xét tứ giác AEIF có
\(\widehat{AEI}+\widehat{AFI}=180^0\)
Do đó: AEIF là tứ giác nội tiếp
â)ĐK;`x-2>=0`
`<=>x>=2`
c)ĐK:`2017/x>=0(x ne 0)`
Mà `2017>0`
`<=>x>0`
e)ĐK:`x^2+2017>=0`
`<=>x^2>=-2017AAx in RR`
b)ĐK:`2-3x>=0`
`<=>3x<=2`
`<=>x<=2/3`
d)ĐK:`(-2017)/(5-x)>=0(x ne 5)`
`<=>2017/(x-5)>=0`
Mà `2017>0`
`<=>x-5>0<=>x>5`
f)ĐK:`1-x^2>=0`
`<=>x^2<=1`
`<=>-1<=x<=1`
Đề bài ko chính xác, nếu x bất kì thì tồn tại vô số x để P nguyên
Nếu \(x\) nguyên thì mới có hữu hạn giá trị x
Bài 1:
a: Xét tứ giác NPIK có
\(\widehat{NKP}=\widehat{NIP}\left(=90^0\right)\)
Do đó: NPIK là tứ giác nội tiếp
hay N,P,I,K cùng thuộc 1 đường tròn
b: Xét tứ giác MKHI có
\(\widehat{MKH}+\widehat{MIH}=180^0\)
Do đó: MKHI là tứ giác nội tiếp
hay M,K,H,I cùng thuộc 1 đường tròn
\(B=\left(3+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(3-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(a\ge0,a\ne1\right)\)
\(=\left(3+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(3-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=9-a\)
Để hàm số \(y=\left(m-1\right)x+2\) đồng biến trên R thì \(m-1>0\Rightarrow m>1\)
Câu 2:
Để hàm số y=(m-1)x+2 đồng biến trên R thì m-1>0
hay m>1
a) \(\left\{{}\begin{matrix}2x-3y=11\\5x-4y=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}10x-15y=55\left(1\right)\\10x-8y=6\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\Rightarrow-7y=49\Rightarrow y=-7\Rightarrow2x=11+3\left(-7\right)=-10\)
\(\Rightarrow x=-5\)
b) đề nãy chỉ có 1 pt x,y không thể tính x,y được
c) bạn viết đề rõ ra chứ mờ quá đọc ko được
\(a,=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{4}\left(\sqrt{3}+\sqrt{2}\right)}=\dfrac{\sqrt{5}}{2}\\ c,=\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{xy}}{y}\\ d,=\dfrac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{5}-\sqrt{3}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\\ =\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+1\right)=2+\sqrt{2}-\sqrt{6}+\sqrt{3}\)
a: \(\sqrt{10}\cdot\sqrt{40}=\sqrt{400}=20\)
b: \(\sqrt{5}\cdot\sqrt{45}=\sqrt{225}=15\)
c: \(\sqrt{52}\cdot\sqrt{13}=\sqrt{676}=26\)
d: \(\sqrt{2}\cdot\sqrt{162}=\sqrt{324}=18\)