Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
đây là bài lớp 10 chứ nhỉ
ta có \(AC=20\times2=40\text{ hải lí}\), \(AB=15\times2=30\text{ hải lí}\)
áp dụng định lý cosin ta có :
\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)
Các phương trình : \(x^2+ax+b=0\left(1\right)\) ; \(x^2+bx+c=0\left(2\right)\) ; \(x^2+cx+a=0\left(3\right)\)
Xét : \(\Delta_1=a^2-4b\) ; \(\Delta_2=b^2-4c\) ; \(\Delta_3=c^2-4a\)
Từ \(\begin{cases}a>b>c>0\\a+b+c=12\end{cases}\)\(\Rightarrow\begin{cases}a>4\\c< 4\\a>b>c>0\end{cases}\)
Ta có : \(a>b\Rightarrow4a>4b\Rightarrow a^2-4b>a^2-4a\Rightarrow\Delta_1>a\left(a-4\right)>0\)( vì a>4)
Do đó pt (1) luôn có nghiệm.
Tương tự : \(c< a\Rightarrow4c< 4a\Rightarrow c^2-4a< c^2-4c\Rightarrow\Delta_3< c\left(c-4\right)< 0\) ( vì 0<c<4)
Do đó pt (3) vô nghiệm.
Vậy có phương trình luôn có nghiệm và 1 phương trình vô nghiệm.
b: \(=\sqrt{5}-2-\sqrt{5}=-2\)