\(\frac{2^{23}+1}{2^{25}+1}\)và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi 223+1/225+1 là A;225+1/227+1 là B 

Ta có 22A=225+4/225+1

22A=225+1/225+1 + 3/225+1    

22A=1+3/225+1

Có 22B=227+4/227+1

22B=227+1/227+1 + 3/227+1

22B=1+3/227+1

Vì 1+3/225+1>1+3/227+1

nên 22A>22B

nên A>B

Vậy A>B

  

Cảm ơn Pé's Pơ's nhiều nha

22 tháng 10 2017

X=2^23+1/2^25+1   =   1/2^2+1  =  1/4+1    =  1/5

Y=2^25+1/2^27+1  =   1/2^2+1  = 1/4+1  =1/ 5

Vì 1/5 = 1/5 nên X=Y

Chúc bạn học tốt

25 tháng 6 2016

Ta có:

\(A=\frac{2^{23}+1}{2^{25}+1}\Rightarrow2A=\frac{2^{25}+2}{2^{25}+1}=1+\frac{1}{2^{25}+1}\)

\(B=\frac{2^{25}+1}{2^{27}+1}\Rightarrow2B=\frac{2^{27}+2}{2^{27}+1}=1+\frac{1}{2^{27}+1}\)

\(\frac{1}{2^{25}+1}>\frac{1}{2^{27}+1}\Rightarrow2A>2B\Rightarrow A>B\)

30 tháng 10 2016

lấy máy tính bấm nha bn 

30 tháng 10 2016

thi ai cho 

11 tháng 7 2019

\(\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{3}{6}\right)\)\(.230\frac{1}{25}+46\frac{3}{4}\)

\(=\)\(\left(\frac{53}{4}-\frac{59}{27}-\frac{21}{2}\right)\)\(.\frac{5751}{25}+\frac{187}{4}\)

\(=\frac{304803}{100}-\frac{12567}{25}-\frac{120771}{50}+\frac{187}{4}\)

\(=\frac{304803}{100}-\frac{50268}{100}-\frac{241542}{100}+\frac{4675}{100}\)

\(=\frac{304803-50268-241542+4675}{100}\)

\(=\frac{17668}{100}\)

\(=\frac{4417}{25}\)

21 tháng 6 2019

a) Ta có: \(-\frac{37}{946}>-\frac{37}{296}=\frac{-37}{37.8}=-\frac{1}{8}\)

hoặc là em sẽ trình bày theo cách này:

Ta có: \(\frac{1}{8}=\frac{37}{296}\)

Vì 296<946 nên \(\frac{37}{296}>\frac{37}{946}\Rightarrow\frac{1}{8}>\frac{37}{946}\Rightarrow-\frac{1}{8}< -\frac{37}{946}\)

b) Vì \(-\frac{24}{25}< -\frac{24}{27};-\frac{23}{27}>-\frac{24}{27}\)

nên \(-\frac{24}{25}< -\frac{24}{27}< -\frac{23}{27}\)

21 tháng 6 2019

a) Gấp đôi tử và mẫu của phân số thứ hai lên 37 lần, ta được phân số: \(\frac{-1}{8}=\frac{-37}{296}\)

Vì \(\frac{-37}{946}>\frac{-37}{296}\)nên \(\frac{-37}{946}>\frac{-1}{8}\)

b) Vì \(\frac{-24}{25}< \frac{-24}{27}\)và \(\frac{-24}{27}< \frac{-23}{27}\)nên suy ra \(\frac{-24}{25}< \frac{-23}{27}\)