K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

Ta có: M = 1 + 3  + 32 + 33 + ... + 325

=> 3M = 3(1 + 3 +32 + 33 + ... + 325)

=> 3M = 3 + 32 + 33 + ... + 325 + 326

=> 3M - M = (3 + 32 + 33 + ... + 326) - (1 + 3 + 32 + 33 + ... + 325)

=> 2M = 326 - 1

=> M = \(\frac{3^{26}-1}{2}\)

^ là mũ nha

M=1+3+3^2+3^3+....+3^25

3M=3+3^2+3^3+3^4+...+3^26

=>2M=3M-M=3^26-1

=>M=2M:2=(3^26-1):2

Vậy M=(3^26-1):2

4 tháng 12 2017

S=3+32+33+....+360

2S=32+33+...+361

2S-S=(32+33+...+361-3+32+33+...+360)

S=361-3

4 tháng 12 2017

mk không chắc đâu nhé.

S=3+32+33+34+....+360

2.S=3+33+34+35+....+361

2.S-S=361-3

vậy S=3mũ 61-1

câu hỏi này mk làm lâu rùi nên hông nhớ rõ.Nếu sai đừng trách nhé

30 tháng 4 2017

dốt thế 

30 tháng 4 2017

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

8 tháng 8 2017

A=1+3+3^2+3^3+3^4+...+3^100

3A=3+3^2+3^3+3^4+...+3^101

3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)

2A=3^101-1

A=(3^101-1):2

phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé

2 tháng 8 2016

X=28:24+32.33

=24+35

=16+243

=259

Chúc bạn học giỏi nha!!!

2 tháng 8 2016

Lm ơn giải nhanh giùm mk nha

25 tháng 12 2022

a. 525

b. 

25 tháng 12 2022

a. -82

b. 15

 

 

15 tháng 11 2021

Bằng một cách thần kì, ta tính được A = \(\dfrac{3^{^{12}}-1}{2}\)

Ta sẽ chứng minh 312 - 1 ⋮ 10, như vậy thì (312 - 1) : 2 là một số nguyên chia hết cho 5

Thật vậy:

Ta có 32 = 9 \(\equiv\) -1 (mod 10)

=> (32)6 \(\equiv\) (-1)6 (mod 10)

=> 312 \(\equiv\) 1 (mod 10)

=> 312 - 1 \(\equiv\) 0 (mod 10)

Hay 312 - 1 chia hết cho 10

Vậy bài toán đã được chứng minh 

13 tháng 12 2017

a, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100

=> 3A = 3( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100)

=> 3A = 3. 3 + 3. 3^2 + 3. 3^3 + ... + 3. 3^99 + 3. 3^100

=> 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101

=> 3A - A = ( 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100 )

=> 2A = 3^101 - 3

=> A = \(\dfrac{3^{101}-3}{2}\)

Vậy dạng viết gọn của A là: \(\dfrac{3^{101}-3}{2}\)

b, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100

=> A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )

=> A = 3( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99( 1 + 3 )

=> A = 3. 4 + 3^3. 4 + ... + 3^99. 4

=> A = 4( 3 + 3^3 + ... + 3^99 ) chia hết cho 4

=> A chia hết cho 4

Vậy A chia hết cho 4 ( điều phải chứng minh )

Chúc bạn hoc tốt! ~ vuithanghoaokyeu

20 tháng 8 2019

\(B=1+2+3^2+\cdot\cdot\cdot+3^{51}\)

\(\Rightarrow B=3+3^2+3^3+\cdot\cdot\cdot+3^{51}\)

\(\Rightarrow3B=3^2+3^3+\cdot\cdot\cdot+3^{52}\)

\(\Rightarrow3B-B=\left(3^2+\cdot\cdot\cdot+3^{52}\right)-\left(3+\cdot\cdot\cdot+3^{51}\right)\)

\(\Rightarrow2B=3^{52}-3\)

\(\Rightarrow B=\frac{3^{52}-3}{2}\)

\(1+2+3^2+3^3+...+3^{50}+3^{51}\) 

Đặt tổng trên là A ta có : 

\(A=3+3^2+3^3+...+3^{50}+3^{51}\)

\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)

\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)

\(2A=3^{52}-3\)

\(A=\frac{3^{52}-3}{2}\)

Vậy...

Cbht