Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{6}{x-3}+\dfrac{2x^2}{x^2-1}+\dfrac{6-2x}{\left(x-3\right)\left(x^2-1\right)}\)
\(=\dfrac{6x^2-6+2x^3-6x^2+6-2x}{\left(x-3\right)\left(x^2-1\right)}\)
\(=\dfrac{2x^3-2x}{\left(x-3\right)\left(x^2-1\right)}=\dfrac{2x}{x-3}\)
b: Để A nguyên thì \(x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{4;2;5;6;0;9;-3\right\}\)
c: Thay x=2 vào A, ta được:
\(A=\dfrac{2\cdot2}{2-3}=-4\)
Thay x=-2 vào A, ta được:
\(A=\dfrac{-2\cdot2}{-2-3}=\dfrac{-4}{-5}=\dfrac{4}{5}\)
Bài 1:
Đáp số: 12 kệ thuốc, 10 thùng thuốc
Vì khi cho 2 thùng lên 1 kệ thì thừa 7 kệ(gt)
=> Số kệ >7
Theo công thức: số kệ = thùng : 2+ 7
Vì khi 1 thùng để lên 2 kệ thì thừa 4 thùng (gt)
=> Số thùng >4
Theo công thức: số thùng= thùng : 2 + 4
Từ đó, ta có thể suy ra được đáp số bằng cách rút gọn các số và cách giải cụ thể (hãy hỏi cô giáo)
a: Xét ΔEAD và ΔECG có
góc EAD=góc ECG
góc AED=góc CEG
=>ΔEAD đồng dạng với ΔECG
=>AD/CG=ED/EG
=>AD*EG=ED*CG
b: Xét ΔHEG và ΔHCB có
góc HEG=góc HCB
góc EHG=góc CHB
=>ΔHEG đồng dạng với ΔHCB
=>HE/HC=HG/HB
Xét ΔHAB và ΔHCG có
góc HAB=góc HCG
góc AHB=góc CHG
=>ΔHAB đồng dạng với ΔHCG
=>HA/HC=HB/HG
=>HC/HA=HG/HB
=>HC/HA=HE/HC
=>HC^2=HA*HE
c: HI//BA
=>HI/BA=CH/CA=CI/CB
HI//EG
=>HI/EG=BI/BC
HI/BA=CI/CB
HI/BA+HI/EG=BI/BC+CI/BC=1
=>HI(1/BA+1/EG)=1
=>1/BA+1/EG=1/HI
\(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\)
<=>\(\dfrac{4\left(7x-2\right)}{12}-\dfrac{24x}{12}< \dfrac{60}{12}-\dfrac{3\left(x-2\right)}{12}\)
<=>\(4\left(7x-2\right)-24x< 60-3\left(x-2\right)\)
<=>\(28x-8-24x< 60-3x+6\)
<=>\(28x+3x-24x< 60+8+6\)
<=>\(7x< 74\)
<=>x<\(\dfrac{74}{7}\)
Vậy...
a: \(A=\dfrac{2x^2+x^2-1-2x^2+2x+1}{x\left(x+1\right)}=\dfrac{x^2+2x}{x\left(x+1\right)}=\dfrac{x+2}{x+1}\)
Bài 1:
a: \(=y\left(4x^2-1\right)=y\left(2x-1\right)\left(2x+1\right)\)
a: Xét ΔEAD và ΔECG có
góc EAD=góc ECG
góc AED=góc CEG
=>ΔEAD đồng dạng với ΔECG
=>AD/CG=ED/EG
=>AD*EG=ED*CG
b: Xét ΔHEG và ΔHCB có
góc HEG=góc HCB
góc EHG=góc CHB
=>ΔHEG đồng dạng với ΔHCB
=>HE/HC=HG/HB
Xét ΔHAB và ΔHCG có
góc HAB=góc HCG
góc AHB=góc CHG
=>ΔHAB đồng dạng với ΔHCG
=>HA/HC=HB/HG
=>HC/HA=HG/HB
=>HC/HA=HE/HC
=>HC^2=HA*HE
c: HI//BA
=>HI/BA=CH/CA=CI/CB
HI//EG
=>HI/EG=BI/BC
HI/BA=CI/CB
HI/BA+HI/EG=BI/BC+CI/BC=1
=>HI(1/BA+1/EG)=1
=>1/BA+1/EG=1/HI
\(=\dfrac{2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2-x-5}{x^2-x+1}\)
\(=2x^2+3x-2+\dfrac{-x-5}{x^2-x+1}\)
Vậy: Đa thức dư là -x-5