Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a ) \(\sqrt{4x-8}+\sqrt{x-2}=4+\dfrac{1}{3}\sqrt{9x-18}\) ( ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=4+\dfrac{1}{3}.3\sqrt{x-2}\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Leftrightarrow2\sqrt{x-2}=4\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\)
\(\Leftrightarrow x=2\) ( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm x = 2 .
Bài 2 :
b ) \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)
\(\Leftrightarrow|x-3|-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{3}=0\left(x\ge3\right)\\3-x-\sqrt{3}=0\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)
Vậy phương trình cón nghiệm \(x=3+\sqrt{3}\) hoặc \(x=3-\sqrt{3}\) .
Để D đạt GTNN
=>\(3+\sqrt{9-4x^2}\) đạt GTLN
Ta thấy: \(-4x^2\le0\)
\(\Rightarrow9-4x^2\le9\)
\(\Rightarrow\sqrt{9-4x^2}\le\sqrt{9}=3\)
\(\Rightarrow3+\sqrt{9-4x^2}\le3+3=6\)
\(\Rightarrow Min_D=\frac{2}{6}=\frac{1}{3}\) khi x=0
Vậy \(Min_D=\frac{1}{3}\) khi x=0
Nhận xét : D > 0
Để D đạt giá trị nhỏ nhất thì \(3+\sqrt{9-4x^2}\) đạt giá trị lớn nhất \(\Leftrightarrow\sqrt{9-4x^2}\) đạt giá trị lớn nhất
Mà ta có : \(-4x^2\le0\Leftrightarrow-4x^2+9\le9\Leftrightarrow\sqrt{9-4x^2}\le3\)
=> Max \(\left(3+\sqrt{9-4x^2}\right)=6\) . Dấu "=" xảy ra khi x = 0
Vậy Min D \(=\frac{2}{6}=\frac{1}{3}\) <=> x = 0
Câu 2:
Có hệ số góc là 2 trong hàm số y=a.x+b có nghĩa là a=2 bạn nhé
c) Ta có: hệ số góc là 2 ⇒a=2
⇒y=2.x+b
Mà đồ thị hàm số đi qua điểm A(1;5) nên x=1;y=5
Thay x=1;y=5 vào hàm số y=2.x+b, ta được:
2.1+b=5
⇔b=5-2=3
Vậy y=2.x+3
Cách làm như vậy bạn nhé có thiếu sót thì bổ sung dùm mình luôn
Bài 3:
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét (O) có
DA là tiếp tuyến
DM là tiếp tuyến
Do đó: DA=DM
mà OA=OM
nên OD là đường trung trực của AM
=>OD\(\perp\)AM tại P
Xét (O) có
CM là tiếp tuyến
CB là tiếp tuyến
Do đó: CM=CB
mà OM=OB
nên OC là đường trung trực của MB
=>OC\(\perp\)MB tại Q
Xét tứ giác MPOQ có \(\widehat{PMQ}=\widehat{MQO}=\widehat{MPO}=90^0\)
nên MPOQ là hình chữ nhật
b: DC=DM+MC=DA+CB
c: Xét ΔDOC vuông tại O có OM là đường cao
nên \(DM\cdot MC=OM^2=R^2\)
hay \(R^2=AD\cdot CB\)
mk bt mk tìm ko thấy nên ms đăng bn bt lm thì giúp mak ko bt lm j thui
Lưu ý
Bạn nên gõ câu hỏi ra thì hơn, chứ để hình như thế thì mọi người sẽ không nhìn rõ
(Đây chỉ là ý kiến của mình, mong bạn đừng giận nha!)
Nguyễn Thế Bảo zô trang cá nhân giúp mk mấy bài toán vs ạ, mk đag ccaafn gấp lém