Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x . biết :
\(a,\frac{2}{5}:\left(-x-\frac{1}{2}\right)=\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}:\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}.\frac{5}{4}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow-x=\frac{1}{2}+\frac{1}{2}\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
a. \(\frac{2}{5}.\left(-x-\frac{1}{2}\right)=\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}:\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}.\frac{5}{4}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow-x=\frac{1}{2}+\frac{1}{2}\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=-1\)
Bài 1:
Giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Vậy x = 6, y = 14
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{2}=2\Rightarrow y=4\)
Vậy x = 10, y = 4
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=>x=6; y=14
Phần b) cũng làm như vậy bạn nhé thay nhõn x+y= x-y thôi
tìm x
a)\(\frac{x}{7}=\frac{18}{14}\)
=> x.14=7.18
x.14=126
x=126:14
x=9
Vậy x =9
b)6:x=\(1\frac{3}{4}:5\)
=>x.1^3^4=6.5
x.1^3^4=30
x=30:1^3^4
x=17^1^7
phần c) làm tương tự bạn nhé
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
a) \(\frac{14}{15}:\frac{9}{10}=x:\frac{3}{7}\Rightarrow\frac{28}{27}=x:\frac{3}{7}\Rightarrow x=\frac{4}{9}\)
b) \(\left(x-\frac{4}{7}\right)^3=343\Rightarrow\left(x-\frac{4}{7}\right)^3=7^3\Rightarrow x-\frac{4}{7}=7\Rightarrow x=\frac{53}{7}\)
c) \(x^5=x^3\Leftrightarrow\hept{\begin{cases}x=1\\x=0\end{cases}}\)
e) \(\left(x-1\right)^4=16\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^4=2^4\\\left(x-1\right)^4=\left(-2\right)^4\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x-1=2\\x-1=\left(-2\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
a) Trong ba số 6,8,24 có ba cach chọn ra tích của hai trong ba số ấy.Với mỗi tích,có một cách lập đẳng thức với tích của số còn lại và số x. Ta có :
6.8 = 24.x. <=> x = 2
6.24 = 8.x. <=> x = 18
8.24 = 6.x. <=> x = 32
b) Bạn tự lập tỉ lệ thức :))
bài 1:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow2x=46\)
\(\Leftrightarrow x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=7\cdot9\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-8\end{array}\right.\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Leftrightarrow\left(x+4\right)^2=5\cdot20\)
\(\Leftrightarrow\left(x+4\right)^2=100\)
\(\Leftrightarrow x+4=10\)
\(\Leftrightarrow x=6\)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\) điều kiện x khác -5
<=> 7(x-3)=5(x+5)
<=> 7x-5x=25+21
<=> x=23
vậy x=23
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)điều kiện x khác 1
<=> 63=x2-1<=> x=\(\pm\)8
vậy x={-8;8}
c) \(\frac{x+4}{20}=\frac{5}{x+4}\) điều kiện x khác -4
<=> (x+4)2=25
<=> \(\left[\begin{array}{nghiempt}x+4=5\\x+4=-5\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=1\\x=-9\end{array}\right.\)
vậy x ={1;-9}