Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(x2-x+1)2
Có \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)
=>\(A>=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
MinA=9/16 <=> x=1/2
Phân tích 1000027 thành tích các thừa số được : 1000027 = 7x19x73x103
=> 1000027 là hợp số.
giải câu B trước nha -_-
Ta có :
\(B=-5x^2-4x+1\)
\(5B=-25x^2-20x+5\)
\(5B=9-25x^2-20x-4\)
\(5B=9-\left(25x^2+20x+4\right)\)
\(5B=9-\left(5x+2\right)^2\le9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(5x+2\right)^2=0\)
\(\Leftrightarrow\)\(5x+2=0\)
\(\Leftrightarrow\)\(5x=-2\)
\(\Leftrightarrow\)\(x=\frac{-2}{5}\)
Mà \(5B\le9\)\(\Rightarrow\)\(B\le\frac{9}{5}\)
Vậy GTNN của \(B\) là \(\frac{9}{5}\) khi \(x=\frac{-2}{5}\)
Chúc bạn học tốt ~
Câu B với câu C mình ko tìm GTNN được -_-
Ta có :
\(C=-2x^2+10x+3\)
\(-2C=4x^2-20x-6\)
\(-2C=\left(4x^2-20x+100\right)-106\)
\(-2C=\left(2x-10\right)^2-106\ge-106\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-10\right)^2=0\)
\(\Leftrightarrow\)\(2x-10=0\)
\(\Leftrightarrow\)\(2x=10\)
\(\Leftrightarrow\)\(x=5\)
Mà \(-2C\ge-106\)\(\Rightarrow\)\(C\le53\)
Vậy GTLN của \(C\) là \(53\) khi \(x=5\)
Chúc bạn học tốt ~
Ta có :
\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+bc^2+a^2b+a^2c+b^2c+abc\)
\(=\left(ab^2+a^2b+abc\right)+\left(bc^2+b^2c+abc\right)+\left(ac^2+a^2c+abc\right)\)
\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+b+c\right)\)
\(=\left(ab+bc+ac\right)\left(a+b+c\right)\)
5B=-25x2 -20x+5 = 9 - (25x2 +20x +4) = 9- (5x+2)2 \(\le9\)
=> B\(\le\frac{9}{5}\)<=> x=-2/5
Tìm GTLN của: \(B=-5x^2-4x+1\)
Ta có
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left[x^2+2x.\frac{2}{5}+\left(\frac{2}{5}\right)^2-\frac{4}{25}-\frac{5}{25}\right]\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\)
Mà \(-5\left(x+\frac{2}{5}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)
=> \(-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)
Vậy B có GTLN bằng \(\frac{9}{5}\)khi \(x=\frac{-2}{5}\).
Tìm GTLN của: \(C=-2x^2+10x+3\)
Ta có
\(C=-2x^2+10x+3\)
\(C=-2\left(x^2-5x-\frac{3}{2}\right)\)
\(C=-2\left[x^2-2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{25}{4}-\frac{9}{4}\right]\)
\(C=-2\left[\left(x-\frac{5}{2}\right)^2-\frac{17}{2}\right]\)
\(C=-2\left(x-\frac{5}{2}\right)^2+17\)
Mà \(-2\left(x-\frac{5}{2}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)
=> \(-2\left(x-\frac{5}{2}\right)^2+17\le17\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)
Vậy C có GTLN bằng 17 khi \(x=\frac{5}{2}\)