Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (3x-2)(4x+5)=0
↔ TH1: 3x-2 = 0 ↔ x = 2/3
TH2 : 4x+5 = 0 ↔ x = -5/4
Vậy PT có tập no S = ( 2/3; -5/4)
b,(2,3x-6,9)(0,1x+2)=0
↔ TH1: 2,3x - 6,9 = 0 ↔ x = 3
TH2 : 0,1x + 2 = 0 ↔ x = -20
Vậy PT có tập no S = ( 3; -20)
c, (4x+2)(x^2 +1)=0
TH1: 4x+2=0 ↔ x = -1/2
Th2 : x^2 +1≠0 ( vô lí)
Vậy PT có tập no S = (-1/2)
d, (2x+7)(x-5)(5x+1)=0
↔ TH1: 2x+7 = 0 ↔ x = -7/2
TH2: x-5 = 0 ↔ x = 5
TH3 : 5x+1 = 0 ↔ x = -1/5
Vậy PT có tập no S = ( -7/2 ; 5 ; -1/5
a, \(\left(3x-2\right)\left(4x+5\right)=0\Leftrightarrow x=\frac{2}{3};x=-\frac{5}{4}\)
b, \(\left(2,3-6,9\right)\left(0,1x+2\right)=0\Leftrightarrow\frac{x}{10}+2=0\Rightarrow x=-20\)
c, \(\left(4x+2\right)\left(x^2+1>0\right)=0\Leftrightarrow x=-\frac{1}{2}\)
a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-10\right)^2+1>1>0\)
Vậy x2-20x+101 >0 với mọi x
b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)
Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)
\(\Rightarrow\left(2a+1\right)^2+1>1>0\)
Vậy 4a2+4a+2 > 0 với mọi a
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)
a)
\(x^2-5x+4x-20=0.\)
\(x^2-x-20=0\)
\(\left(x^2-x+\frac{1}{4}\right)-20-\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2-\left(\frac{20.4+1}{4}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{2}-\left(\frac{20.4+1}{4}\right)=0\\x-\frac{1}{2}+\left(\frac{20.4+1}{4}\right)=0\end{cases}}\)
b) \(x^2+6x-7x-42=0\)
\(x^2-x-42=0\)
\(x^2-x+\frac{1}{4}-42-\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2-\left(\frac{42.4+1}{4}\right)=0\) " tương tự con A
\(x^3-16x=0\)
\(x\left(x^2-16\right)=0\)
\(x=0,+4,-4\)
\(x^3-16x=0\)
\(x.\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)
Vậy \(x=0\)hoặc \(x=\pm4\)
Tham khảo nhé~
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
Bài 1.
a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18
<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18
<=> -52x + 9 = 18
<=> -52x = 9
<=> x = -9/52
b) ( x - 7 )2 - 9( x + 4 )2 = 0
<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0
<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0
<=> -8x2 - 86x - 95 = 0
<=> -8x2 - 10x - 76x - 95 = 0
<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0
<=> ( x + 5/4 )( -8x - 76 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)
c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36
<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36
<=> 8x2 + 23x - 4 - 36 = 0
<=> 8x2 + 23x - 40 = 0
=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))
Bài 2.
a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
\(a,x\left(x-5\right)+6< 0\Leftrightarrow\left(x+6\right)\left(x-5\right)< 0\)
\(\orbr{\begin{cases}x+6< 0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -6\\x< 5\end{cases}}}\)
\(b,x^2+\left(x-2\right)\left(x+2\right)>2x\left(x-2\right)\)
\(\Leftrightarrow x^2+x^2-4>2x^2-4x\Leftrightarrow-4>-4x\)
\(\Leftrightarrow-4x< -4\Rightarrow x>1\)
\(c,\left(x-3\right)\left(x-3\right)+\left(x+5\right)\left(x+5\right)< 2\left(x-3\left(x+5\right)\right)\)
\(\Leftrightarrow x^2-6x+9+x^2+10x+25< 2x^2+4x-30\)
\(\Leftrightarrow2x^2-2x^2+4x-4x< -30-34\)
\(\Leftrightarrow0x< -64\)
bất phương trình vô nghiệm
a) Ta có: \(-x^2-4x-5\)
\(=-\left(x^2+4x+5\right)\)
\(=-\left(x^2+4x+4+1\right)\)
\(=-\left[\left(x+2\right)^2+1\right]\)
Mà \(\left(x+2\right)^2\ge0\) với mọi giá trị của x
\(\Rightarrow\left(x+2\right)^2+1>0\) với mọi giá trị của x
\(\Rightarrow-\left[\left(x+2\right)^2+1\right]< 0\) với mọi giá trị của x
\(\Rightarrow-x^2-4x-5< 0\) với mọi giá trị của x
Bạn có thể viết kí hiệu \(\forall\) thay cho từ "mọi giá trị"
b) Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\)
\(=\frac{1}{2}.2\left[a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\right]\)
\(=\frac{1}{2}\left(2a^2-2ab+2b^2-2bc+2c^2-2ac\right)\)
\(=\frac{1}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) với mọi giá trị của a,b,c
\(\Rightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\) với mọi giá trị cùa a,b,c
\(\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\ge0\) với mọi giá trị của a,b,c