Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)\(=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
=\(11\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99\cdot100}\right)\)=\(11\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)=\(11\left(1-\frac{1}{100}\right)\)=11\(\frac{99}{100}\)=\(\frac{1089}{100}\)
Đặt \(A=\frac{11}{1.2}+\frac{11}{2.3}+...+\frac{11}{99.100}\)
\(\Rightarrow A=11\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=11\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A=11.\frac{99}{100}\)
\(\Rightarrow A=\frac{1089}{100}\)
(1-1/1.2)+(1-1/2*3)+......+(1-1/2015*2016)
=(0/1*2)+(0+2*3)+..........+(0/2015*2016)
=0
tui nghĩ cái đề phải như thế này \(\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2018\cdot2019}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(A=1-\frac{1}{2019}=\frac{2018}{2019}\)
Mà \(\frac{2018}{2019}< \frac{2019}{2019}=1\)
\(\Rightarrow A< 1\)
A=1.2+2.3+3.4+........+98.99
3A=1.2.3+2.3.3+3.4.3+........+98.99.3
3A=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3A=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3A=98.99.100
===>A=(98.99.100)/3
#Japhkiel#
A=1.2+2.3+3.4+........+98.99
3A=1.2.3+2.3.3+3.4.3+........+98.99.3
3A=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3A=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3A=98.99.100
A=\(\frac{98.99.100}{3}=\frac{970200}{3}=323400\)
giúp mình câu trên với mẫu là \(\dfrac{1}{1.2015}+\dfrac{1}{3.2013}+\dfrac{1}{5.2011}+...+\dfrac{1}{2013.3}+\dfrac{1}{2015.1}\)