Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{7}{12}-\left(x+\dfrac{7}{10}\right):\dfrac{6}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{7}{12}-x-\dfrac{7}{10}:\dfrac{6}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{7}{12}-x-\dfrac{7}{12}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{7}{12}-x=\dfrac{5}{4}+\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{7}{12}-x=\dfrac{11}{6}\)
\(\Leftrightarrow x=\dfrac{7}{12}-\dfrac{11}{6}\)
\(\Leftrightarrow\dfrac{-5}{4}\)
Bài 9:
a: Bạn chỉ cần vẽ tam giác ABC vuông tại A có AB=3cm và AC=4cm là ra cái hình rồi
Số đo góc A thì chắc chắn là 90 độ rồi
Bài 6:
\(B=\dfrac{1}{199}+1+\dfrac{2}{198}+1+\dfrac{3}{197}+1+...+\dfrac{198}{2}+1+1\)
\(=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)
\(=200\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{200}\right)=200\cdot A\)
=>A/B=1/200
1.A= 1.2.3+2.3.4+...+29.30.31+x=15
\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)
Từ đó suy ra nha bạn
2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)
Gọi số sách là x
Theo đề, ta có: \(x+2\in BC\left(10;25\right)\)
\(\Leftrightarrow x+2\in B\left(50\right)\)
mà x là số lớn nhất có 3 chữ số và thỏa mãn đề bài
nên x+2=1000
hay x=998
\(A=\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{19.20}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{3}-\dfrac{1}{20}< \dfrac{1}{3}\)
\(B=\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{19.20}=2\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{19.20}\right)=2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)=2\left(\dfrac{1}{3}-\dfrac{1}{20}\right)=\dfrac{2}{3}-\dfrac{2}{20}< \dfrac{2}{3}\)
\(C=\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{18.20}=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{18.20}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{18}-\dfrac{1}{20}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{4}-\dfrac{1}{40}< \dfrac{1}{4}\)
\(D=\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{18.20}=\dfrac{1}{2}\left(\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{18.20}\right)=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{18}-\dfrac{1}{20}\right)=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{20}\right)=\dfrac{1}{8}-\dfrac{1}{40}< \dfrac{1}{8}\)