K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

x=-9

3 tháng 12 2021

Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{x-y}{3-6}=\dfrac{9}{-3}=-3\)

\(\dfrac{x}{3}=-3\Rightarrow x=-9\)

6 tháng 7 2016

2.

\(\frac{3n+9}{n-4}\in Z\)

\(\Rightarrow3n+9⋮n-4\)

\(\Rightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)\)

\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)

\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)

\(B=\frac{6n+5}{2n-1}\in Z\)

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow6n-3+8⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

\(\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

\(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

 

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

18 tháng 3 2016

a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)

Nếu y = \(\sqrt{7}\) thì :

x2y3 = 5 . y.y

x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)

Nếu y = -\(\sqrt{7}\)  thì :

x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)

b) x2y= 5.7 = 35

x6y6 = (x2y2)3 = 353 = 42875

c) làm tương tự câu (a).  Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!

29 tháng 10 2019

A = | x - 2015 | +| x - 2016 | 

A = | x - 2015 | + | 2016 - x | 

A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |

A = | x - 2015 | + | 2016 - x | \(\ge\)1

Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0

                       \(\Rightarrow\)x = 2015 hoặc x = 2016

Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016

29 tháng 10 2019

Bạn làm đc câu b ko

23 tháng 4 2017

ta có : x=2010

->x-1=2009

A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1

A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1

A(x)=x+1=2010+1=2011

24 tháng 4 2017

Cảm ơn

8 tháng 4 2020

a) P(x) - Q(x)

= 5x4y5 + 7x7y6z - (7xy7 - 15xy6z)

= 5x4y5 + 77y6z - 7xy7 + 15xy6z

P(x) + Q(x)

= 5x4y5+ 7x7y6z + (7xy7 - 15xy6z)

= 5x4y5 + 7x7y6z + 7xy7 - 15xy6z

b) Cho mik hỏi 2 đa thức trên là P(x) - Q(x) và P(x) + Q(x) hay chỉ là P(x) và Q(x) thôi ạ ?

Mình làm tất, bạn tự lựa chọn nha!

Thay x = 1 và y = 3 vào hai đa thức trên, ta được :

P(x) - Q(x)

= 5.14.35 + 7.17.36.z

= 5.1.243 + 7.1.729.z

= 1215 + 5103z

P(x) + Q(x)

= 5.14.35 + 7.17.36.z

= 5.1.243 + 7.1.729.z

= 1215 - 5103z

P(x) = 5.14.35 + 7.17.36.z = 5.1.243 = 1215

Q(x) = 7.17.36.z = 7.1.729.z = 5103z

10 tháng 4 2020

Cảm ơn nhoa