K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 1 2021

A B C H I M N K

do từ câu b ta có MHNK là hình vuông từ đó ta có 

MN là trung trực của KH (1)

mà ta có hai tam giác vuông IKB và IHB nên ta có \(PH=PK=\frac{1}{2}BI\)( đường trung tuyến ứng với cạnh huyền)

Do PH=PK nên P thuộc đường trung trực của KH (2)

từ (1) và (2) ta có P thuộc MN

chứng minh tương tự ta có 

Q thuộc MN

do đó M,N,P,Q thẳng hàng

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

28 tháng 1 2023

a: Khi x=3 thì \(A=\dfrac{3\cdot3}{3-2}=9\)

b: C=A+B

\(=\dfrac{3x}{x-2}-\dfrac{6}{x-2}-\dfrac{x^2+4x+4}{x^2-4}\)

\(=\dfrac{3x-6}{x-2}-\dfrac{x+2}{x-2}\)

\(=\dfrac{3x-6-x-2}{x-2}=\dfrac{2x-8}{x-2}\)

c: Để C nguyên thì 2x-4-4 chia hết cho x-2

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6\right\}\)

3 tháng 3

CÂU 1: 

\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

CÂU 2: 

\(\dfrac{12x^3y^2}{18xy^5}=\dfrac{2x^2}{3y^3}\)

CÂU 3: 

\(\dfrac{15x\left(x+5\right)^3}{20x^2\left(x+5\right)}=\dfrac{3\left(x+5\right)^2}{4x}\)

CÂU 4: 

\(\dfrac{3xy+x}{9y+3}=\dfrac{x\left(3y+1\right)}{3\left(3y+1\right)}=\dfrac{x}{3}\)

CÂU 5: 

\(\dfrac{3xy+3x}{9y+9}=\dfrac{3x\left(y+1\right)}{9\left(y+1\right)}=\dfrac{x}{3}\)

CÂU 6: 

\(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}=\dfrac{-x}{5y}\)

CÂU 7:

\(\dfrac{2x^2+2x}{x+1}=\dfrac{2x\left(x+1\right)}{x+1}=2x\)

CÂU 8: 

\(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\\ =\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

CÂU 9: 

\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\dfrac{2y}{3\left(x+y\right)^2}\)

a: BC=căn 6^2+8^2=10cm

bD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc B chung

=>ΔBHA đồng dạng với ΔBAC

=>BH/BA=BA/BC

=>BH*BC=BA^2

c: Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA

=>IH/IA=BA/BC=AD/DC

26 tháng 10 2021

a: Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó: BHCD là hình bình hành

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

hay \(AB^2=HB\cdot BC\)

b: Xét ΔHAC vuông tại H và ΔHBA vuông tại H có

\(\widehat{HAC}=\widehat{HBA}\)

Do đó; ΔHAC\(\sim\)ΔHBA

SUy ra: HA/HB=HC/HA

hay \(HA^2=HB\cdot HC\)

16 tháng 3 2022

a) Xét ∆ABC(<A=90 ° ) và ∆HBA(<H=90 ° ), ta có:
<B chung ⟹∆ABC~ ∆HBA(g.g)
⟹AB/HB=BC/AB⟹AB*AB=HB*BC hay AB2=BH*BC
b)Xét ∆HAC(<H=90 °) và  ∆HBA(<H=90 ° ), ta được:
<B=<HAC( vì cùng phụ với <BAH do <B+<BAH =90°; <HAC+<BAH =90°)
⟹∆HAC~∆HBA(g.g)
⟹HA/HB=HC/HA⟹HA*HA=HB*HC hayHA2=BH*CH

14 tháng 10 2021

Bài 6:

a: Xét ΔABC có

D là trung điểm của BC

M là trung điểm của AC

Do đó: DM là đường trung bình của ΔABC

Suy ra: DM//AB và \(DM=\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)

11 tháng 11 2021

a: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC

hay DECB là hình thang