Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1
\(PT\Leftrightarrow\left(x-2m+1\right)\left(x-m\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2m-1\\x=m\end{matrix}\right.\).
+) TH1: \(\left\{{}\begin{matrix}x_1=2m-1\\x_2=m\end{matrix}\right.\Rightarrow m^2=2m-1\Leftrightarrow m=1\).
+) TH2: \(\left\{{}\begin{matrix}x_1=m\\x_2=2m-1\end{matrix}\right.\Rightarrow\left(2m-1\right)^2=m\Leftrightarrow\left(m-1\right)\left(4m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{4}\end{matrix}\right.\).
Vậy...
Để phương trình có 2 nghiệm
\(\Delta'\ge0\Rightarrow\left(-1\right)^2-1.3m\ge0\Leftrightarrow1-3m\ge0\Leftrightarrow1\ge3m\Leftrightarrow\dfrac{1}{3}\ge m\)
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=\dfrac{3m}{1}=3m\end{matrix}\right.\)
Ta có:
\(x_1^2x_2^2=x_1+x_2+7\\ \Leftrightarrow x_1x_2.x_1x_2=x_1+x_2+7\\ \Rightarrow3m.3m=2+7\\ \Leftrightarrow9m^2-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\left(tm\right)\\m=1\left(ktm\right)\end{matrix}\right.\)
Vậy m = -1
\(3x^2-\left(3m-2\right)x-\left(3m+1\right)=0\left(1\right)\)\(\left(ĐK:a\ne0\right)\)
Theo phương trình ( 1 ) ta có:
\(\Delta=\left(3m-2\right)^2+4.3.\left(3m+1\right)\)
\(\Delta=9m^2-12m+4+36m+12\)
\(\Delta=9m^2+24m+16\)
\(\Delta=\left(3m\right)^2+2.3.4m+4^2=\left(3m+4\right)^2\)
Phương trình ( 1 ) có 2 nghiệm \(x_1;x_2\Leftrightarrow\Delta=\left(3m+4\right)^2>0\)
Mà \(\left(3m+4\right)^2\ge0\Rightarrow\left(3m+4\right)^2\ne0\)\(\Rightarrow3m\ne-4\Rightarrow m\ne-\frac{4}{3}\)
Ta có: \(x_1+x_2=\frac{3m-2}{3}\left(2\right)\)
\(x_1-x_2=\frac{-3m-1}{3}\left(3\right)\)
\(3x_1-5x_2=6\left(2\right)\)
Từ ( 2 ) và ( 3 ) suy ra \(6x_2=\frac{3m-2}{3}-6\)\(\Rightarrow x_2=\frac{3m-2}{18}-1\)
Rồi làm tương tự với \(x_2\) tiếp tục thay \(x_1,x_2\)và phương trình ( 1 )
\(3x^2-\left(3m-2\right)x-\left(3m+1\right)=0\)
có \(\Delta=\left[-\left(3m-2\right)\right]^2-4.3.\left[-\left(3m+1\right)\right]\)
\(\Delta=9m^2-12m+4+36m+12\)
\(\Delta=9m^2+24m+16\)
\(\Delta=\left(3m+4\right)^2\ge0\forall m\)
vì theo đề bài để pt có 2 nghiệm nên thỏa mãn đk \(\forall m\)
ta có vi - ét \(\hept{\begin{cases}x_1+x_2=\frac{3m-2}{3}\left(1\right)\\x_1.x_2=-\frac{\left(3m+1\right)}{3}\left(2\right)\end{cases}}\)
theo bài ra \(3x_1-5x_2=6\) \(\left(3\right)\)
từ \(\left(1\right),\left(3\right)\) ta có hệ phương trình \(\hept{\begin{cases}x_1+x_2=\frac{3m-2}{3}\\3x_1-5x_2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=m+\frac{2}{3}\\x_1-\frac{5}{3}x_2=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{8}{3}x_2=m+\frac{2}{3}-2\\x_1+x_2=m+\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{3}{8}m-\frac{1}{2}\\x_1+\frac{3}{8}m-\frac{1}{2}=m+\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{3}{8}m-\frac{1}{2}\\x_1=m-\frac{3}{8}m+\frac{2}{3}+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{3}{8}m-\frac{1}{2}\\x_1=\frac{5}{8}m+\frac{7}{6}\end{cases}}\) \(\left(4\right)\)
thay (4) vào (2) ta được
\(\left(\frac{3}{8}m-\frac{1}{2}\right)\left(\frac{5}{8}m+\frac{7}{6}\right)=\frac{-3m-1}{3}\)
\(\Leftrightarrow\frac{15}{64}m+\frac{7}{16}-\frac{5}{16}m-\frac{7}{12}=-m-\frac{1}{3}\)
\(\Leftrightarrow\frac{-5}{64}m-\frac{7}{48}+m+\frac{1}{3}=0\)
\(\Leftrightarrow\frac{59}{64}m+\frac{3}{16}=0\)
\(\Leftrightarrow\frac{59}{64}m=\frac{-3}{16}\)
\(\Leftrightarrow m=\frac{-12}{59}\) ( TM \(\forall m\))
vậy \(m=\frac{-12}{59}\) là giá trị cần tìm