Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
c: Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)
\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)
\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)
Để phép chia trên là phép chia hết thì a+12=0
hay a=-12
Đặt \(f\left(x\right)=x^3-2x^2-6x+a\)
Gọi thương của \(f\left(x\right):\left(x-2\right)\)là \(P\left(x\right)\)
\(\Rightarrow f\left(x\right)=P\left(x\right).\left(x-2\right)\)
Thay \(x=2\)ta có:
\(8-8-12+a=0\)
\(\Rightarrow a=12\)
Vậy \(a=2\)là giá trị cần tìm
c. Câu hỏi của Toàn Lê - Toán lớp 8 - Học toán với OnlineMath
Để \(2x^3-4x^2+6x+a⋮x+2\)
\(\Leftrightarrow2x^3-4x^2+6x+a=\left(x+2\right)\cdot a\left(x\right)\)
Thay \(x=-2\)
\(\Leftrightarrow2\left(-2\right)^3-4\left(-2\right)^2+6\left(-2\right)+a=0\\ \Leftrightarrow-16-16-12+a=0\\ \Leftrightarrow-44+a=0\Leftrightarrow a=44\)
ta có
6x^3-x^2-23x+a
=6x^3+9x^2-10x^2-15x-8x+a
=3x^2(2x+3)-5x(2x+3)-8X+a
=(2x+3)(3x^2-5x)-8x+a
để biểu thức chia hết cho 2x+3 thì 8x+a chia hết cho 2x+3
nên a=12
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)
Lời giải:
Theo định lý Bê-du về phép chia đa thức, để $f(x)=6x^3-x^2-23x+a$ chia hết cho $2x+3$ thì:
$f(\frac{-3}{2})=0$
$\Leftrightarrow 12+a=0$
$\Leftrightarrow a=-12$
Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)
\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)
\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)
Để phép chia này là phép chia hết thì a+12=0
hay a=-12