Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét tứ giác ABMD có
O là trung điểm của AM
O là trung điểm của BD
Do đó: ABMD là hình bình hành
a: Xét tứ giác ABMD có
O là trung điểm chung của AM và BD
=>ABMD là hình bình hành
b: ta có:ABMD là hình bình hành
=>AD//MB và AD=MB
Ta có: AD//MB
M\(\in\)BC
Do đó: AD//CM
Ta có: AD=MB
MC=MB
Do đó: AD=MC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCD có
AD//CM
AD=CM
Do đó:AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Ta có: AMCD là hình thoi
=>AC vuông góc với DM tại trung điểm của mỗi đường
=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM
Xét ΔABC có
N,K lần lượt là trung điểm của AB,AC
=>NK là đường trung bình của ΔABC
=>NK//BC
=>NK//MH
Xét ΔABC có
M,N lần lượt là trung điểm của BC,BA
=>MN là đường trung bình của ΔABC
=>MN//AC và \(MN=\dfrac{AC}{2}\)
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(HK=\dfrac{AC}{2}\)
=>MN=HK
Xét tứ giác MHNK có MH//NK và MN=HK
nên MHNK là hình thang cân
d:
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(KA=KH=KC=\dfrac{AC}{2}\)
Ta có: ΔHAB vuông tại H
mà HN là đường trung tuyến
nên \(HN=AN=NB=\dfrac{AB}{2}\)
Xét ΔKAN và ΔKHN có
KA=KH
AN=HN
KN chung
Do đó: ΔKAN=ΔKHN
=>\(\widehat{KAN}=\widehat{KHN}=90^0\)
a, tứ giác AMCD có: ID=IM;IA=IC
⇒tứ giác AMCD là hình bình hành
Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)
⇒tứ giác AMCD là hình chữ nhật
b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)
mà B∈CM và BM=CM
⇒AD//BM và AD=BM
⇒tứ giác ABMD là hình bình hành
Lời giải:
a. $M,N$ đối xứng nhau qua $O$ nghĩa là $O$ là trung điểm $MN$
Tứ giác $AMBN$ có 2 đường chéo $AB, MN$ cắt nhau tại trung điểm $O$ của mỗi đường nên $AMBN$ là hbh $(1)$
Mặt khác, tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ đồng thời là đường cao
$\Rightarrow AM\perp BC$ nên $\widehat{AMB}=90^0(2)$
Từ $(1); (2)\Rightarrow AMBN$ là hình chữ nhật
b. Vì $AMBN$ là hcn nên $BM\parallel AN$ và $BM=AN$
Mà $B,M,C$ thẳng hàng và $BM=MC$ nên:
$AN\parallel CM, AN=CM$
$\Rightarrow ACMN$ là hình bình hành
c.
$ACMN$ là hbh nên $MN\parallel AC$
Để $ACMN$ là hình vuông thì $MN\perp AB$
$\Leftrightarrow AC\perp AB$
$\Leftrightarrow ABC$ là tam giác vuông tại $A$
a, Vì D,E là trung điểm AB,AC nên DE là đtb tg ABC
Do đó DE//BC hay BDEC là hthang
b, Vì E là trung điểm AC và DM nên AMCD là hbh
c, Để AMCD là hcn thì \(\widehat{ADC}=90^0\) hay CD là đường cao tam giác ABC
Mà CD là trung tuyến tam giác ABC
Do đó để AMCD là hcn thì tam giác ABC cân tại C