K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Tính nhanh:

\(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)

Đặt \(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)

\(=2-1+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)

\(=\) Không biết! Nhờ Doraeiga  với At the speed of light - Trang của At the speed of light - Học toán với OnlineMath giải nhé! Tui mới lớp 6 thôi! Chưa học tới bài này

10 tháng 8 2017

\(A=\frac{2}{1+2}+\frac{2+3}{1+2+3}+....+\frac{2+3+...+20}{1+2+3+...+20}\)

\(A=\frac{2}{3}+\frac{5}{6}+...+\frac{209}{210}\)

\(A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{210}\right)\)

\(A=\left(1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{210}\right)\)

\(A=19-\left(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{420}\right)\)

\(A=19-\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\right)\)

\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\right]\)

\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{21}\right)\right]\)

\(A=19-\left[2\cdot\frac{19}{42}\right]=19-\frac{19}{21}=\frac{380}{21}\)

Vậy A = .....

17 tháng 12 2021
S có chia hết cho 3 bạn nhé
3 tháng 3 2022

Thế S là số nào bn mà chia hết cho 3 vậy bn ?

28 tháng 8 2021

KHO THE

19 tháng 9 2021

\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)

\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)

\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)

31 tháng 7 2019

100-3(x-1)2=52

3(x-1)2=100-52

3(x-1)2=48

(x-1)2=48:3

(x-1)2=16

(x-1)2=42=(-4)2

=> x-1=4 hoặc x-1=-4

TH1: 

x-1=4

x=4+1

x=5

TH2:

x-1=-4

x=-4+1

x=-3

Vậy x=5 hoặc x=-3

31 tháng 7 2019

100 - 3(x - 1)2 = 52

<=> 3(x - 1)2 = 48

<=> (x - 1)2 = 16

<=> (x - 1)2 = 42 = (-4)2

<=> \(\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)

DD
8 tháng 8 2021

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)

\(2A=1-\frac{1}{3^8}\)

\(A=\frac{1}{2}-\frac{1}{2.3^8}\)

Giải:

a) \(2\dfrac{17}{20}-1\dfrac{15}{11}+6\dfrac{9}{20}:3\)

\(=\dfrac{57}{20}-\dfrac{26}{11}+\dfrac{129}{20}:3\) 

\(=\dfrac{107}{220}+\dfrac{43}{20}\)

\(=\dfrac{29}{11}\)

b) \(4\dfrac{3}{7}:\left(\dfrac{7}{5}.4\dfrac{3}{7}\right)\) 

\(=\dfrac{31}{7}:\left(\dfrac{7}{5}.\dfrac{31}{7}\right)\) 

\(=\dfrac{31}{7}:\dfrac{31}{5}\) 

\(=\dfrac{5}{7}\) 

c) \(\left(3\dfrac{2}{9}.\dfrac{15}{23}.1\dfrac{7}{29}\right):\dfrac{5}{23}\) 

\(=\left(\dfrac{29}{9}.\dfrac{15}{23}.\dfrac{36}{29}\right):\dfrac{5}{23}\) 

\(=\dfrac{60}{23}:\dfrac{5}{23}\) 

\(=12\)

22 tháng 3 2017

bằng 1