K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)

\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)

\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)

\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)

Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)

\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

\(b,\) Không thể suy ra đẳng thức

16 tháng 9 2021

Vì sao không thể suy ra hằng đẳng thức  bạn

23 tháng 6 2017

Câu a: tự chứng minh.

Câu b: áp dụng câu a

11 tháng 12 2017

câu a dùng định lí hàm sin(Trong SGK nhé bạn)

NM
14 tháng 8 2021

C A B H

Gọi AH là đường cao của tam giác ABC như hình vẽ

ta có : \(AH=AC\times sinC=b.sinC\)

mà \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AC.BC.sinC=\frac{1}{2}ab.sinC\)

.b hoàn toàn tương tự ta có thể chứng minh :

\(S_{ABC}=\frac{1}{2}ab.sinC=\frac{1}{2}bc.sinA=\frac{1}{2}ac.sinB\)

hay \(abc.\frac{sinC}{c}=abc.\frac{sinA}{a}=abc.\frac{sinB}{b}\)

hay ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

5 tháng 8 2018

Kẻ BH vuông góc với AC, ta có:

\(BH=AB\sin A\)

Do đó: \(S_{ABC}=\dfrac{1}{2}AC.BH=\dfrac{1}{2}AC.AB.\sin A\)

\(\Rightarrowđpcm\)

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

24 tháng 7 2018

A B C c b a m D E F

a) Kẻ các đường cao \(AD;BE;CF\)

ta có : \(AD=AB.sinB\)\(AD=AC.sinC\)

\(\Rightarrow AB.sinB=AC.sinC\Leftrightarrow c.sinB=b.sinC\Leftrightarrow\dfrac{c}{sinC}=\dfrac{b}{sinB}\)

làm tương tự ta có : \(\dfrac{b}{sinB}=\dfrac{a}{sinA}\)\(\dfrac{a}{sinA}=\dfrac{c}{sinC}\)

\(\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(đpcm\right)\)

b) ta có : \(BC^2=BE^2+EC^2=AB^2-AE^2+\left(AC-AE\right)^2\)

\(\Leftrightarrow BC=AB^2-AE^2+AC^2-2AC.AE+AE^2\)

\(\Leftrightarrow BC^2=AB^2+AC^2-2AC.AB.cosA\)

\(\Leftrightarrow a^2=b^2+c^2-2bc.cosA\left(đpcm\right)\)

c) ta có : \(AB=BF+FA=BC.cosB+AC.cosA\)

\(\Leftrightarrow c=a.cosB+b.cosA\left(đpcm\right)\)

24 tháng 7 2018

đặc \(M\) là chân đường trung tuyên kẻ từ \(A\) \(\left(m_a\right)\)

ta có : \(AM^2=AB^2+BM^2-2AB.BM.cosB\)

\(\Leftrightarrow AM^2=AB^2+BM^2-2AB.BM\dfrac{AB^2+BC^2-AC^2}{2AB.2BM}\)

\(\Leftrightarrow AM^2=AB^2+\left(\dfrac{BC}{2}\right)^2-\dfrac{AB^2+BC^2-AC^2}{2}\)

\(\Leftrightarrow AM^2=AB^2-\dfrac{AB^2+BC^2-AC^2}{2}+\dfrac{BC^2}{4}\)

\(\Leftrightarrow AM^2=\dfrac{2AB^2-AB^2-BC^2+AC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\Leftrightarrow m_a^2=\dfrac{c^2+b^2}{2}-\dfrac{a^2}{4}\left(đpcm\right)\)

(chú ý câu này sử dụng công thức ở câu \(b;c\) nha)