\(\dfrac{cos3x}{1-sinx}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

\(y=\dfrac{cos3x}{1-sinx}+tanx=\dfrac{cos3x}{1-sinx}+\dfrac{sinx}{cosx}\)

Hàm số xác định khi \(\left\{{}\begin{matrix}1-sinx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinx\ne1\\cosx\ne0\end{matrix}\right.\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)

18 tháng 7 2020

a) ĐK:  \(\cos x\ne0\)( vì tan x = sinx/cosx nên cos x khác 0)

<=> \(x\ne\frac{\pi}{2}+k\pi\); k thuộc Z

TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z

b) ĐK: \(1+\cos2x\ne0\Leftrightarrow\cos2x\ne-1\Leftrightarrow2x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\); k thuộc Z

=> TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z

c) ĐK: \(\hept{\begin{cases}\cot x-\sqrt{3}\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{\pi}{6}+k\pi\text{​​}\text{​​}\\x\ne l\pi\end{cases}}\); k,l thuộc Z

=>TXĐ: ....

d) ĐK: \(1-2\sin^2x\ne0\Leftrightarrow\cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

=> TXĐ:...

21 tháng 6 2019

Cộng đồng học tập online | Học trực tuyến

Lần sau có bài em đăng trong link này để đc các bạn giúp đỡ nhé!

+)\(y=\frac{1}{\sqrt{1+\cos4x}}\)

ĐKXĐ: \(\cos4x+1>0\Leftrightarrow\cos4x>-1\Leftrightarrow\cos4x\ne-1\)

\(\Leftrightarrow4x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\), k thuộc Z

TXĐ: \(ℝ\backslash\left\{\frac{\pi}{4}+\frac{k\pi}{2}\right\}\), k thuộc Z

+) \(y=\sqrt{\tan x-\sqrt{3}}\)

ĐKXĐ: \(\hept{\begin{cases}\tan x-\sqrt{3}\ge0\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}\tan x\ge\tan\frac{\pi}{3}\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow}\frac{\pi}{3}+k\pi\le x< \frac{\pi}{2}+k\pi}\)

TXĐ:...

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

19 tháng 7 2017

vì sao cosx - cos3x = -2sin2xsin(-x) = 4sin\(^2\)xcosx

6 tháng 9 2018

a) để hàm số : \(y=\dfrac{1-cosx}{sin2x}\) có nghĩa \(\Leftrightarrow sin2x\ne0\Leftrightarrow2x\ne k\pi\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{k\pi}{2}\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{tanx}{cosx+1}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi;\pi+k2\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{k\pi;\dfrac{\pi}{2}+k\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\sqrt{\dfrac{1}{1-sinx}}\) có nghĩa \(\Leftrightarrow1-sinx>0\)

ta có : \(sinx\le1\forall x\Rightarrow1-sinx\ge0\forall x\) \(\Rightarrow\) hàm số xác định khi \(1-sinx\ne0\) là đủ

\(\Leftrightarrow sinx\ne1\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\)

23 tháng 6 2016

\(x\ne2k\pi;\left(k\in Z\right)\)

6 tháng 6 2019

Ban đầu bạn phân tích từ sin2x - 2 ≠ 0 thành sinx.cosx ≠ 1.

Sao đến cuối bạn lại biến sinx.cosx ≠ 1 thành sin2x ≠ \(\frac{1}{2}\)