Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x-4=0
=>3x=4
hay x=4/3
b: (x+2)(2x-3)=0
=>x+2=0 hoặc 2x-3=0
=>x=-2 hoặc x=3/2
a) (x - 4)^3 = (x + 4)(x^2 - x - 16)
<=> x^3 - 8x^2 + 16x - 4x^2 + 32x - 64 = x^3 - x^2 - 16x + 4x^2 - 4x - 64
<=> -12x^2 + 48x - 64 = 3x^2 - 20
<=> 12x^2 - 48x + 64 + 3x^2 - 20 = 0
<=> 15x^2 - 68x = 0
<=> x(15x - 68) = 0
<=> x = 0 hoặc 15x - 68 = 0
<=> x = 0 hoặc 15x = 68
<=> x = 0 hoặc x = 68/15
b) \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\) (ĐKXĐ: x khác 0, x khác -2)
<=> \(\frac{x+2}{x}=\frac{\left(x+1\right)\left(x+4\right)}{x\left(x+2\right)}=\frac{x}{x+2}\)
<=> x(x + 2) + 2(x + 2) = (x + 1)(x + 4) + x^2
<=> x^2 + 2x + 2x + 4 = x^2 + 4x + x + 4 + x^2
<=> x^2 + 4x + 4 = 2x^2 + 5x + 4
<=> x^2 + 4x = 2x^2 + 5x
<=> x^2 + 4x - 2x^2 - 5x = 0
<=> -x^2 - x = 0
<=> x(x + 1) = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 (ktm) hoặc x = -1 (tm)
Vậy: nghiệm của phương trình là: -1
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
a \(\Leftrightarrow3x=12\Leftrightarrow x=4\)
b \(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c \(ĐKXĐ:x\ne2;x\ne-2\)
\(\Rightarrow\left(x+2\right)^2-6\left(x-2\right)=x^2\Leftrightarrow x^2+4x+4-6x+12=x^2\Leftrightarrow-2x+16=0\Leftrightarrow-2x=-16\Leftrightarrow x=8\left(TM\right)\)
a) Ta có: 3x-12=0
\(\Leftrightarrow3x=12\)
hay x=4
Vậy: S={4}
b) Ta có: (x-2)(2x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{-3}{2}\right\}\)
1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)
Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c
=> a+b+c=0=> a^3+b^3+c^3=3abc=0
=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0
=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0
tìm được x=3
2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)
<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
<=> (x-y-1)^2=0 và (y+2)^2=0
=> x=-1;y=-2