K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

Vẽ hình ra thì mình giải cho !!!!!!!!!

Thông cảm !!!!!!!!!

Toán hình là phải có hình 

27 tháng 1 2017

A C B x F T D

8 tháng 2 2015

a) Tam giác vuông EBD và tam giác vuông ECA có góc E chung nên đồng dạng. Suy ra EB/EC = ED/EA

=> EA.EB = ED.EC

Xét tam giác EAD và tam giác ECB có góc E chung và EA/EC = ED/EA nên đồng dạng theo trường hợp c-g-c, suy ra góc EAD = góc ECB

b) PQ là đường trung bình của tam giác BDH nên PQ//BD mà BD vuông góc với DC nên PQ vuông góc DC. Vậy Q là trực tâm của tam giác PDC. Suy ra CQ vuông góc PD

đợi minkf tí

minhf không vẽ hình nha

26 tháng 4 2019

A B C D M K E x 2 1 2 1

a) Vì BE//AC

=> \(\widehat{A1}=\widehat{E2} \) (2 góc slt)

Xét ΔADMvàΔEDB có:

\(\widehat{A1}=\widehat{E2} \) (cmtrn)

\(\widehat{D1}=\widehat{D2} \) (2 góc đối đỉnh)

=> ΔADM∼ΔEDB (g.g)

b) Theo câu a) => \(\frac{BE}{AM}=\frac{ED}{AD}=\frac{DM}{DB}\)

( mà DM=DB=\(\frac{1}{2}MB\))

=> \(\frac{BE}{AM}=\frac{ED}{AD}=\frac{DM}{DB}=1\)

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông tại...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0