Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỉ biết cách làm mấy dạng căn trong căn như vầy là phá từ căn nhỏ nhất lên bằng cách phân tích biểu thức trong căn đó thành dạng bình phương 1 số.
\(\sqrt{53-20\sqrt{4+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{53-20\sqrt{4+\sqrt{\left(8+2\cdot2\sqrt{2}+1\right)}}}\)
\(=\sqrt{53-20\sqrt{4+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{53-20\sqrt{4+\left|2\sqrt{2}+1\right|}}\)
\(=\sqrt{53-20\sqrt{5+2\sqrt{2}}}\)
= { \(5+2\sqrt{2}\) bằng bao nhiêu bình phương không biết => không làm được, hóng người trả lời câu này cả buổi để tham khảo, nhưng chả thấy ai hết, khả năng của t chỉ được thế thôi , xin lỗi nhé}
Bài này chắc g.viên dạy của tớ cho sai đề bạn ạ:))...Dù sao cũng cảm ơn bạn nhiều ạ:)))
Lời giải:
a) $MA,MB$ là tiếp tuyến của $(O)$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Tứ giác $MAOB$ có tổng 2 góc đối $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
b) Xét tam giác $MAC$ và $MDA$ có:
$\widehat{M}$ chung
$\widehat{MAC}=\widehat{MDA}$ (tính chất góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)
$\Rightarrow \triangle MAC\sim \triangle MDA$ (g.g)
$\Rightarrow \frac{MA}{MD}=\frac{MC}{MA}\Rightarrow MA^2=MC.MD$
c) Dễ thấy $AB\perp MO$ tại $H$.
Xét tam giác $AMO$ vuông tại $A$ có đường cao $AH$, áp dụng định lý hệ thức lượng trong tam giác vuông:
$MA^2=MH.MO$
Kết hợp kết quả phần b suy ra $MH.MO=MC.MD$
$\Rightarrow CHOD$ là tứ giác nội tiếp.
d) Vận dụng giả thiết $AD\parallel MB$ và tính chất góc tạo bởi tiếp tuyến- dây cung ta có:
$\widehat{MCB}=180^0-\widehat{CMB}-\widehat{CBM}$
$=180^0-\widehat{CDA}-\widehat{CDB}$
$=180^0-\widehat{ADB}=\widehat{ACB}$ (do $ACBD$ là tứ giác nội tiếp)
** Khuyên chân thành các bạn muốn nâng cao xác suất được hỗ trợ thì nên chịu khó gõ đề bằng công thức toán. Chụp hình như này đọc bài rất nản, đặc biệt là hình xoay ngược đọc mỏi cổ lém.
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
ta có
\(A=B.\left|x-4\right|\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}.\left|x-4\right|\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)
Vậy :
\(\orbr{\begin{cases}\sqrt{x}+2=x-4\\\sqrt{x}+2=-x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)
1, đk: \(x>0\) và \(x\ne4\)
Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)
Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\) và \(x\ne4\)
\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)
Vậy MinA=1 khi x=1
2, đk: \(x\ge0;x\ne1;x\ne9\)
Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)
Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)
\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MaxB=-1 khi x=4
3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)
Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)
Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)
\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)
\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MinC=\(\dfrac{1}{11}\) khi x=4
hình 1 : cho tam giác ABC vuông tại A, hạ đường cao AH, H thuộc BC
Xét tam giác ABC vuông tại A, đường AH
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=y=\frac{AB^2}{BC}=\frac{225}{17}\)cm
=> \(CH=x=BC-y=17-\frac{225}{17}=\frac{64}{17}\)cm
* Áp dụng hệ thức : \(AC^2=c=CH.BC=\frac{64}{17}.17=64\Rightarrow AC=8\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=h=\frac{AB.AC}{BC}=\frac{15.8}{17}=\frac{120}{17}\)cm
tương tự hình 2 ; 3
làm ko làm nốt luôn đi
dùng đã bt rồi nhưng cần kết quả để so sánh sai ở đâu
nhân 0 vào 2 vế ta có:
5x0=7x0
0=0
Vậy 5=7 điều phải chứng minh
voi cach c/m cua bn thi DAI SO cua Toan loan het ak
VD:4^2=-4^2 chang han 0=-2=-99...=99...
Tham khảo:
Gọi số lượng công việc của đội 1 và 2 làm được trong 1h lần lượt là a,b(phần công việc) \(\left(a,b>0\right)\),x là công việc cần làm \(\left(x>0\right)\)
Theo đề,ta có: \(\left\{{}\begin{matrix}\dfrac{18}{5}\left(a+b\right)=x\left(1\right)\\\dfrac{x}{b}-\dfrac{x}{a}=3\left(2\right)\end{matrix}\right.\)
Từ (2) \(\Rightarrow x\left(\dfrac{1}{b}-\dfrac{1}{a}\right)=3\Rightarrow x=\dfrac{3}{\dfrac{1}{b}-\dfrac{1}{a}}=\dfrac{3}{\dfrac{a-b}{ab}}=\dfrac{3ab}{a-b}\)
Thế vào (1),ta được: \(\dfrac{18}{5}\left(a+b\right)=\dfrac{3ab}{a-b}\Leftrightarrow\dfrac{18\left(a+b\right)}{5}=\dfrac{3ab}{a-b}\)
\(\Rightarrow18\left(a+b\right)\left(a-b\right)=15ab\Rightarrow18a^2-15ab-18b^2=0\)
\(\Rightarrow6a^2-5ab-6b^2=0\Rightarrow\left(3a+2b\right)\left(2a-3b\right)=0\)
mà \(a,b>0\Rightarrow2a=3b\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}b\\b=\dfrac{2}{3}a\end{matrix}\right.\)
Thế vào (1),ta được: \(\left\{{}\begin{matrix}\dfrac{18}{5}\left(a+\dfrac{2}{3}a\right)=x\\\dfrac{18}{5}\left(\dfrac{3}{2}b+b\right)=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a=x\\9b=x\end{matrix}\right.\)
\(\Rightarrow\) đội 1 làm xong công việc trong 6h,đội 2 làm xong trong 9h