K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

Gọi số đèn mỗi ngày mà lớp 9A, số đèn mỗi ngày mà lớp 9B làm được lần lượt là a,b (đèn) (a,b>0)

=> Lớp 9A làm 2 ngày, lớp 9B làm 1 ngày được 22 chiếc, ta có pt: 2a+b=22 (1)

Lớp 9A làm 1 ngày, lớp 9B làm 2 ngày được 23 chiếc, ta có pt: a+2b=23 (2)

Từ (1), (2) lập hệ pt:

\(\left\{{}\begin{matrix}2a+b=22\\a+2b=23\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=44\\a+2b=23\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a=21\\2a+b=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=22-2a\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=7\\a=22-2.7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=7\\a=8\end{matrix}\right.\)

Một ngày, cả 2 lớp cùng làm thì sẽ được: a+b=7+8=15(chiếc đèn)

Nếu cả hai lớp cùng làm thì thời gian hoàn thành công việc sẽ là:

60:15=4(ngày)

3 tháng 5 2023

Cảm ơn bạn 

1.theo bất đẳng thức côsi ta có

\(a+b\ge2\sqrt{ab}\\ b+c\ge2\sqrt{ab}\\ c+a\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{ab.bc.ca}\)

                                       \(\ge8\sqrt{a^2b^2c^2}\\ \ge8abc\)

2.\(a^4+b^2\ge2\sqrt{a^4b^2}=2a^4b^2\)

\(\dfrac{a}{a^4+b^2}\le\dfrac{a}{2a^2b}=\dfrac{1}{2ab}\)

tương tự:\(\dfrac{b}{b^4+a^2}\le\dfrac{1}{2ab}\)

\(\rightarrow\dfrac{a}{a^4+b^2}+\dfrac{b}{b^4+a^2}\le\dfrac{1}{ab}\)

dấu = xảy ra khi \(a^4=b^2\\ b^4=a^2\)\(\rightarrow a^2=b^2=1\)

NV
31 tháng 8 2021

\(\sqrt{a^2+3}=\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{1}{2}\left(a+b+a+c\right)=\dfrac{1}{2}\left(2a+b+c\right)\)

Tương tự: \(\sqrt{b^2+3}\le\dfrac{1}{2}\left(a+2b+c\right)\) ; \(\sqrt{c^2+3}\le\dfrac{1}{2}\left(a+b+2c\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(4a+4b+4c\right)=2\left(a+b+c\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:

b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:

 $B=90^0-C=90^0-45^0=45^0$

Do đó, tam giác $ABC$ vuông cân tại $A$

$\Rightarrow AC=AB=50$ (cm)

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)

f.

Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)

$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$

$\Rightarrow B=44,42^0$

$C=90^0-B=90^0-44,42^0=45,58^0$

b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)

nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)

Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=50^2+50^2=5000\)

hay \(BC=50\sqrt{2}\left(cm\right)\)

NV
23 tháng 2 2021

Bạn tham khảo:

Làm hộ mình câu 3 hình với ạ ^^ - Hoc24

24 tháng 2 2021

Vâng ạ

Bài 2: 

Ta có: \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

hay OH<OI<OK

NV
22 tháng 2 2021

Câu 4:

D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp

\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)

Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)

Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))

\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)

./

Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)

Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác

Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)

Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q

Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)

\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)

Mặt khác BP song song MF (cùng song song AC)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)

NV
22 tháng 2 2021

Hình vẽ câu 4:

undefined

Bài 3: 

a: Gọi OK là khoảng cách từ O đến AB

Suy ra: K là trung điểm của AB

hay \(AK=BK=\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔOKA vuông tại K, ta được:

\(OA^2=OK^2+KA^2\)

hay OK=3(cm)

a: \(f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}+\dfrac{1}{2}-2=-\dfrac{5}{4}\)