Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, a, \(F=k.\dfrac{\left|q_1q_2\right|}{0,06}=...\)
b, ta thấy \(MA+AB=MB\)
\(E_1=k.\dfrac{\left|q_1\right|}{MA^2}\)
\(E_2=k\dfrac{\left|q_2\right|}{MB^2}\)
\(E=\left|E_1-E_2\right|\)
a,\(R_đ=\dfrac{12^2}{6}=24\left(\Omega\right)\)
\(R_{tđ}=\dfrac{24.12}{12+24}+12=20\left(\Omega\right)\)
\(I.r+20.I=15\Rightarrow I=0,6\left(A\right)\)
\(U=0,6.20=12\left(V\right)\)
\(\Rightarrow I_đ=\dfrac{12-0,6.8}{24}=0,3\left(A\right)\)
\(I_{đđm}=\dfrac{6}{12}=0,5\)
b, P nguồn là \(E.I\)
mạch \(0,6^2.20\)
đấy là ban đầu nhá bh bn đặt R1=x giữ nguyên P nguồn xong tính Rtđ để tìm P mạch thỏa mãn bài
so sánh tự đưa ra kết luận
Okie, xinh nên giúp :3 Đùa thui
a/ 5 nguồn mắc nối tiếp \(\left\{{}\begin{matrix}\xi_b=5.\xi=5.4=20\left(V\right)\\r_b=5r=5.0,2=1\left(\Omega\right)\end{matrix}\right.\)
b/ \(R_D=\dfrac{U^2_{dm}}{P_{dm}}=\dfrac{36}{6}=6\left(\Omega\right);I_{dm}=\dfrac{P_{dm}}{U_{dm}}=\dfrac{6}{6}=1\left(A\right)\)
Đèn sáng bình thường \(\Rightarrow I_2=I_D=I_{dm}=1\left(A\right)\)
\(\left(R_1ntR_B\right)//\left(R_2ntR_D\right)\Rightarrow R_{td}=\dfrac{\left(R_1+R_B\right)\left(R_2+R_D\right)}{R_1+R_B+R_2+R_D}=\dfrac{\left(2+4\right)\left(6+6\right)}{2+4+6+6}=4\left(\Omega\right)\)
c/ \(I=\dfrac{\xi_b}{r_b+R_{td}}=\dfrac{20}{1+4}=4\left(A\right)\)
\(I=I_1+I_2\Rightarrow I_1=I-I_2=4-1=3\left(A\right)\Rightarrow P_1=I_1^2.R_1=3^2.2=18\left(W\right)\)
\(m_{Cu}=\dfrac{A_{Cu}.I_B.t}{F.n}=\dfrac{64.3.\left(32.60+10\right)}{96500.2}=...\left(g\right)\)