Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32.
\(sin^4x=\left(sin^2x\right)^2=\left(\dfrac{1-cos2x}{2}\right)^2=\dfrac{1}{4}-\dfrac{1}{2}cos2x+\dfrac{1}{4}cos^22x\)
\(\)\(=\dfrac{1}{4}-\dfrac{1}{2}cos2x+\dfrac{1}{4}\left(\dfrac{1}{2}+\dfrac{1}{2}cos4x\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}cos2x+\dfrac{1}{8}cos4x\)
\(a+b+2c=\dfrac{3}{8}-\dfrac{1}{2}+2.\left(\dfrac{1}{8}\right)=\dfrac{1}{8}\)
33.
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=m^2-4m< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 4\end{matrix}\right.\)
\(\Rightarrow m=\left\{1;2;3\right\}\) có 3 giá trị
\(tan^2a+cota=tan^2a+\dfrac{1}{tana}=\left(\dfrac{1}{4}\right)^2+\dfrac{1}{\dfrac{1}{4}}=\dfrac{1}{16}+4=\dfrac{65}{16}\)
chép lại đề đc k bn. Tb cộng 3 số 35 số thứ nhất 1.... đoạn này viết dấu chấm dấu phẩy đi, mk k hỉu lamws ~_~
\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)
\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)
\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)
Số học sinh lớp 6A là 120x3/10=36(bạn)
Số học sinh lớp 6C là 120x4/10=48(bạn)
Số học sinh lớp 6B là:
120-36-48=36(bạn)
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
\(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\)
\(S_{max}\) khi \(sin\widehat{AIB}=1\Rightarrow\Delta AIB\) vuông cân tại I
\(\Rightarrow AB=R\sqrt{2}=3\sqrt{2}\)
\(\Rightarrow d\left(I;AB\right)=\dfrac{AB}{2}=\dfrac{3\sqrt{2}}{2}\)
Gọi phương trình AB có dạng: \(a\left(x+1\right)+b\left(y+3\right)=0\) với a;b ko đồng thời bằng 0
\(d\left(I;AB\right)=\dfrac{\left|a-2b+a+3b\right|}{\sqrt{a^2+b^2}}=\dfrac{3\sqrt{2}}{2}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=3\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(4a^2+4ab+b^2\right)=9\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2-8ab+7b^2=0\Rightarrow\left[{}\begin{matrix}a=b\\a=7b\end{matrix}\right.\)
Chọn b=1 \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;7\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x+1\right)+1\left(y+3\right)=0\\1\left(x+1\right)+7\left(y+3\right)=0\end{matrix}\right.\)
\(36^{35}.12.234=\left(6^2\right)^{35}.2^2.3.18.13=6^{70}.2^2.3.3^2.2.13=2^{70}.3^{70}.2^3.3^3.13=2^{73}.3^{73}.13\)
36.
\(Q=x-2+\dfrac{3}{x-2}+2\ge2\sqrt{\dfrac{3\left(x-2\right)}{x-2}}+2=2\left(\sqrt{3}+1\right)\)
39.
\(\dfrac{\sqrt{3}cosx+sinx}{2cosx+3sinx}=\dfrac{\dfrac{\sqrt{3}cosx}{sinx}+\dfrac{sinx}{sinx}}{\dfrac{2cosx}{sinx}+\dfrac{3sinx}{sinx}}=\dfrac{\sqrt{3}cotx+1}{2cotx+3}=\dfrac{\sqrt{3}.\left(-\dfrac{1}{2}\right)+1}{2.\left(-\dfrac{1}{2}\right)+3}=\dfrac{2-\sqrt{3}}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow a-4b=-2\)
40. \(\overrightarrow{BA}=\left(6;4\right)=2\left(3;2\right)\Rightarrow\) trung trực AB nhận (3;2) là 1 vtpt
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;3\right)\)
Phương trình trung trực AB:
\(3\left(x+1\right)+2\left(y-3\right)=0\Leftrightarrow3x+2y-3=0\)