Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+5\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+5>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-5\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x>2\end{cases}}\) (loại)
Vậy -5 < x < 2
b) \(\left(x+2\right)\left(x-\frac{3}{5}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-\frac{3}{5}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-\frac{3}{5}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>\frac{3}{5}\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x< \frac{3}{5}\end{cases}}\)
Vậy x > 3/5 hoặc x < -2
a ) ( x + 5 )( x - 2 ) < 0
=> x + 5 duong va x - 2 am hoac x + 5 am va x - 2 duong
Neu x + 5 duong va x - 2 am thi
-5 < x < 2
=> x \(\in\left\{1;0;-1;-2;-3;-4\right\}\)
Neu x + 5 am va x - 2 duong thi :
x < -5 va x > 2
Vi 2 dieu kien tren mau thuan vs nhau nen x\(\varnothing\)trong truong hop nay
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
=>x2.(-1-3-5-7)\(\le\)0
=>x2-16 \(\le\)0
mà x2>0 <=> 16 >0
=>x2=16
x=\(\sqrt{16}=4\)
bạn ơi đây là: (x2-1)*(x2-3)*(x2-5)*(x2-7) bé hơn hoặc bằng 0
( 3x + 1 ) ( 5 - 2x ) > 0
---> 3x + 1 và 5 - 2x cùng dấu
+, \(\hept{\begin{cases}3x+1>0\\5-2x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{3}\\\frac{5}{2}>x\end{cases}}\Leftrightarrow\frac{5}{2}>x>\frac{-1}{3}\)
+, \(\hept{\begin{cases}3x+1< 0\\5-2x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-1}{3}\\\frac{5}{2}< x\end{cases}}\Leftrightarrow\frac{5}{2}< x< \frac{-1}{3}\)VÔ LÝ
xin tiick
a) Ta có :
\(\left|\frac{3}{4}x-4\right|\ge0\)
\(\left|3x+5\right|\ge0\)
\(\Rightarrow\left|\frac{3}{4}x-4\right|+\left|3x+5\right|\ge0\)
Mà : \(\left|\frac{3}{4}x-4\right|+\left|3x+5\right|=0\) (đề bài)
\(\Rightarrow\hept{\begin{cases}\frac{3}{4}x-4=0\\3x+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{3}\\x=-\frac{5}{3}\end{cases}}\)
Vì trong một phương trình không thể cùng có 2 giá trị
=> Không có giá trị x thõa mãn đề bài
ban ghi so mu ro rang ra ti duoc ko. minh ko hieu lam
(-x^2y) la -x mu 2y hay -x mu 2 nhan y?
(-x2y)3*1/22y3*(-2xy2z)2
= -x6y3*1/22y3*-2x2y4z2
= 1x8y10z2
Ta có các TH:
+/ x-1\(\ge\)0 => x\(\ge\)1=> Ix-1I=x-1 và I1-xI=x-1
Phương trình tương đương: 2016(x-1)+(x-1)2=2015(x-1)
<=> (x-1)+(x-1)2=0 <=> (x-1)(1+x-1)=0
<=> x(x-1)=0 => x=0 (Loại) và x=1 (Chọn)
+/ x-1< 0 => x<1=> Ix-1I=1-x và I1-xI=1-x
Phương trình tương đương: 2016(1-x)+(x-1)2=2015(1-x)
<=> (1-x)+(x-1)2=0 <=> (x-1)(-1+x-1)=0
<=> (x-1)(x-2)=0 => x=1 (Loại) và x=2 (Loại) vì x<1
ĐS: x=1
Suy ra 2016 . |x-1| - 2015. |1-x| + ( x-1 )^2 =0 ( chuyển vế)
suy ra |x-1| (2016-2015) + (x-1)^2 =0 ( đổi |1-x| thành |x-1| rồi phân phối)
suy ra |x-1| . 1 + (x-1)^2 =0
Suy ra |x-1| + (x-1)^2 =0
Vì | x-1| >=0, mọi x
(x-1)^2 >=0, mọi x
suy ra |x-1| + (x-1)^2 >= 0, mọi x
dấu ' = ' xảy ra <=> (x-1) =0 hoặc (x-1)^2 =0
Tính ra thì cả 2 kết quả đều ra x=1
vậy x=1
Ko tránh khỏi thiếu sót, nếu sai ai đo sửa lại nhé. thắc mắc gì thì cứ hỏi
_Hết_
a) \(\left(x+1\right)\left(x-2\right)< 0\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Rightarrow x=\left\{1;0\right\}\)
b) Xét 2 trường hợp
+ TH1: \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}}\)=> \(x< -\frac{2}{3}\)thỏa mãn đề bài
+ TH2: \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}}\)=> x > 2 thỏa mãn đề bài
Vậy \(\orbr{\begin{cases}x< -\frac{2}{3}\\x>2\end{cases}}\)thỏa mãn đề bài
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\left|\frac{-3}{10}+\frac{1}{2}\right|-\frac{1}{6}\)
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\frac{1}{5}-\frac{1}{6}\)
\(\frac{4}{3}-\left(x-\frac{1}{5}\right)=\frac{1}{30}\)
\(x-\frac{1}{5}=\frac{4}{3}-\frac{1}{30}\)
\(x-\frac{1}{5}=\frac{13}{10}\)
\(x=\frac{13}{10}+\frac{1}{5}\)
\(x=\frac{3}{2}\)
x(x-2)+3(x-2)=0
=>x2-2x+3x-6=0
=>x2-x-6=0
=>(x-3)(x-2)=0
\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)\(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Ai tích mk mk sẽ tích lại