K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

\(x\left(x^2+13x-6\right)=\left(x^2+8x-6\right)\sqrt{x^2+6x}\)

=> \(\left[x\left(x^2+13x+6\right)\right]^2=\left[\left(x^2+8x-6\right)\sqrt{x^2+6x}\right]^2\)

=> \(x^2\left(x^2+13x+6\right)^2=\left(x^2+8x-6\right)^2\left(x^2+6x\right)\)

<=> \(x^2\left(x^2+13x+6\right)-x\left(x+6\right)\left(x^2+8x-6\right)^2=0\)

<=> \(x\left(x^3+13x^2+6x-x^3-8x^2+6x-6x^2-48x+36\right)=0\)

<=> \(x\left(-x^2-36x+36\right)=0\)

28 tháng 5 2021

từ dòng ba xuống dòng bốn bạn ghi thiếu bình phương rùi 

NV
19 tháng 1 2022

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

16 tháng 8 2017

a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

ĐK:tự xác định 

\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)

\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)

b nghiệm xấu quá để mình xem lại :v

\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)

\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)

đến đây thì chịu 

tìm đc 1 nghiệm là -1;1,nên bình phương lên

22 tháng 8 2019

\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)

\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)

\(\Leftrightarrow x^2+4=4x+8\)

\(\Leftrightarrow x^2-4x-4=0\)

\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)

Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)

P/S: Ko chắc

\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)

\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Rightarrow x^2+4=2x+4\)

\(\Rightarrow x^2+4-2x-4=0.\)

\(\Rightarrow x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy .............

Study well 

28 tháng 6 2021

Lag tí -.-'

`ĐK:2<=x<=6`

BP 2 vế ta có:

`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`

`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`

`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`

`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`

Đặt `sqrt{-x^2+8x-12}=a(a>=0)`

`pt<=>a^2+2a-8=0`

`<=>a=2(tm),a=-4(l)`

`<=>-x^2+8x-12=4`

`<=>x^2-8x+16=0`

`<=>(x-4)^2=0<=>x=4(tmđk)`

Vậy `S={4}`

Học giỏi vậy bạn? $x^2-8x+24=(x-2).(x-6)$ ?? Well =)))

25 tháng 5 2021

Ghi thiếu đề bài nên tl lại oho

`sqrt{x-2}+sqrt{6-x}=x^2-8x+16+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

25 tháng 5 2021

`sqrt{x-2}+sqrt{6-x}=x^2-8x+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

13 tháng 9 2023

\(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)

\(ĐKXĐ:2\le x\le6\)

Xét VP của pt ta thấy : \(\sqrt{x^2-8x+24}\text{=}\sqrt{x^2-8x+16+8}\)

\(\text{=}\sqrt{\left(x-4\right)^2+8}\)

\(\Rightarrow VP\ge\sqrt{8}\)

Xét VT của pt ta có :

\(VT^2\text{=}x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

\(VT^2\text{=}4+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Áp dụng BĐT cô si cho 2 số không âm ta có :

\(2\sqrt{\left(x-2\right)\left(6-x\right)}\le\left(\sqrt{x-2}\right)^2+\left(\sqrt{6-x}\right)^2\)

\(\text{=}x-2+6-x\text{=}4\)

\(\Rightarrow VT^2\le8\)

\(\Rightarrow VT\le\sqrt{8}\)

Để \(VT\text{=}VP\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\text{=}0\\\sqrt{x-2}\text{=}\sqrt{6-x}\end{matrix}\right.\)

\(\Leftrightarrow x=4\left(TM\right)\)

Vậy...........

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

ĐK:.............

Đặt $\sqrt{2x^2+x+6}=a; \sqrt{x^2+x+2}=b$ với $a,b\geq 0$ thì PT trở thành:

$a+b=\frac{a^2-b^2}{x}$

$\Leftrightarrow (a+b)(\frac{a-b}{x}-1)=0$

Nếu $a+b=0$ thì do $a,b\geq 0$ nên $a=b=0$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}=0$ (vô lý)

Nếu $\frac{a-b}{x}-1=0$

$\Leftrightarrow a-b=x$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}+x$

$\Rightarrow 2x^2+x+6=2x^2+x+2+2x\sqrt{x^2+x+2}$ (bình phương 2 vế)

$\Leftrightarrow 2=x\sqrt{x^2+x+2}(1)$

$\Rightarrow 4=x^2(x^2+x+2)$

$\Leftrightarrow x^4+x^3+2x^2-4=0$

$\Leftrightarrow (x-1)(x^3+2x^2+4x+4)=0$

Từ $(1)$ ta có $x>0$. Do đó $x^3+2x^2+4x+4>0$ nên $x-1=0$

$\Rightarrow x=1$Vậy..........

 

10 tháng 6 2019

a)ĐKXĐ \(\orbr{\begin{cases}x\ge3+\sqrt{2}\\x\le3-\sqrt{2}\end{cases}}\)

Đặt \(\sqrt{x^2-6x+7}=a\ge0.\)\(\Rightarrow x^2-6x+7=a^2\Leftrightarrow x^2-6x=a^2-7\)

Ta có phương trình:

\(a^2-7+a=5\Leftrightarrow a^2+a-12=0\Leftrightarrow a^2-3a+4a-12=0\)

\(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)

\(\Leftrightarrow a-3=0\)(Vì \(a\ge0\rightarrow a+4\ge4\))

\(\Leftrightarrow a=3\Leftrightarrow\sqrt{x^2-6x+7}=3\)

\(\Leftrightarrow x^2-6x+7=9\Leftrightarrow x^2-6x-2=0\)

Ta có \(\Delta^'=3^2-\left(-2\right)=11>0\)

\(\Rightarrow x_1=3-\sqrt{11}\)(TMĐK)

\(x_2=3+\sqrt{11}\)(TMĐK)

Kết luận vậy phương trình đã cho có 2 nghiệm phân biệt .............

b) ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0;\sqrt{x+6}=b>0\)

\(\Rightarrow b^2-a^2=x+6-\left(x+1\right)=5\)

Ta có hệ phương trinh :\(\hept{\begin{cases}a+b=5\\b^2-a^2=5\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b-a\right)\left(b+a\right)=5\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b-a=1\\a+b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)(TMĐK)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=4\\x+6=9\end{cases}\Leftrightarrow}}x=3\left(TMĐK\right).\)

Vậy phương trình đã cho có nghiệm duy nhất là ...

Chỗ đó bạn viết đề mình không biết vế phải bằng 5 hay 55 nữa

Nếu là 55 thì làm tương tự và chỗ hệ thay bằng \(\hept{\begin{cases}a+b=55\\b^2-a^2=5\end{cases}}\)Giải tương tự tìm được \(\hept{\begin{cases}a=\frac{302}{11}\\b=\frac{303}{11}\end{cases}\Leftrightarrow x=\frac{91083}{121}\left(TMĐK\right).}\)

c) ĐKXĐ \(x\ge1\)

 \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)

\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)

\(\Leftrightarrow|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=4\)(3)

* Nếu \(\sqrt{x-1}< 2\)phương trình (3) tương đương với

\(2-\sqrt{x-1}+3-\sqrt{x-1}=4\Leftrightarrow2\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=\frac{1}{4}\Leftrightarrow x=\frac{5}{4}\left(TMĐK\right)\)

* Nếu \(2\le\sqrt{x-1}\le3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+3-\sqrt{x-1}=4\Leftrightarrow1=4\left(loại\right)\)

* Nếu \(\sqrt{x-1}>3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+\sqrt{x-1}-3=4\)\(\Leftrightarrow2\sqrt{x-1}=9\Leftrightarrow\sqrt{x-1}=\frac{9}{2}\Leftrightarrow x-1=\frac{81}{4}\Leftrightarrow x=\frac{85}{4}\left(TMĐK\right)\)

Vậy phương trình đã cho có 2 nghiệm phân biệt .......

'